【题目】如图,在平面直角坐标系中,已知,,.
(1)求过点、、三点的抛物线解析式;
(2)在抛物线上取点,若点的横坐标为10,求点的坐标及的度数;
(3)设抛物线对称轴交轴于点,的外接圆圆心为(如图②)
①求点的坐标及⊙的半径;
②过点作⊙的切线交于于点(如图③),设为⊙上一动点,则在点运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在相同条件下重复试验,若事件A发生的概率是,则下列说法正确的是( )
A. 说明在相同条件下做100次试验,事件A必发生50次
B. 说明在相同条件下做多次这种试验,事件A发生的频率必是50%
C. 说明在相同条件下做两个100次这种试验,事件A平均发生50次
D. 说明在相同条件下做100次这种试验,事件A可能发生50次
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=16cm,BC=8cm,一动点P从点C出发沿着CB方向以2cm/s的速度运动,另一动点Q从A出发沿着AC边以4cm/s的速度运动,P、Q两点同时出发,运动时间为t(s).
(1)若△PCQ的面积是△ABC面积的,求t的值?
(2)△PCQ的面积能否与四边形ABPQ面积相等?若能,求出t的值;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦BC=OB,点D是上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G.
(1)求∠DGE的度数;
(2)若=,求的值;
(3)记△CFB,△DGO的面积分别为S1,S2,若=k,求的值.(用含k的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.
(1)求坡底C点到大楼距离AC的值;
(2)求斜坡CD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点O是∠ABC和∠ACB两个内角平分线的交点,过点O作EF∥BC分别交AB,AC于点E,F,已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017辽宁省葫芦岛市)如图,∠MAN=60°,AP平分∠MAN,点B是射线AP上一定点,点C在直线AN上运动,连接BC,将∠ABC(0°<∠ABC<120°)的两边射线BC和BA分别绕点B顺时针旋转120°,旋转后角的两边分别与射线AM交于点D和点E.
(1)如图1,当点C在射线AN上时,①请判断线段BC与BD的数量关系,直接写出结论;
②请探究线段AC,AD和BE之间的数量关系,写出结论并证明;
(2)如图2,当点C在射线AN的反向延长线上时,BC交射线AM于点F,若AB=4,AC=,请直接写出线段AD和DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O2在x轴正半轴上,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P1、P2在反比例函数(x>0)的图象上,则 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com