精英家教网 > 初中数学 > 题目详情

【题目】如图,AD∥BC,∠D=90°.
(1)如图1,若∠DAB的平分线与∠CBA的平分线交于点P,试问:点P是线段CD的中点吗?为什么?
(2)如图2,如果P是DC的中点,BP平分∠ABC,∠CPB=35°,求∠PAD的度数为多少?

【答案】
(1)解:点P是线段CD的中点.理由如下:

过点P作PE⊥AB于E,

∵AD∥BC,∠D=90°,

∴∠C=180°﹣∠D=90°,即PC⊥BC,

∵∠DAB的平分线与∠CBA的平分线交于点P,

∴PD=PE,PC=PE,

∴PC=PD,

∴点P是线段CD的中点;


(2)解:过点P作PE⊥AB于E,

∵AD∥BC,∠D=90°,

∴∠C=180°﹣∠D=90°,即PC⊥BC.

在△PBE与△PBC中,

∴△PBE≌△PBC(AAS),

∴∠EPB=∠CPB=35°,PE=PC,

∵PC=PD,

∴PD=PE,

在Rt△PAD与Rt△PAE中,

∴Rt△PAD≌Rt△PAE(HL),

∴∠APD=∠APE,

∵∠APD+∠APE=180°﹣2×35°=110°,

∴∠APD=55°,

∴∠PAD=90°﹣∠APD=35°.


【解析】(1)过点P作PE⊥AB于E,根据平行线的性质求出∠C=90°,即PC⊥BC,再根据角平分线上的点到角的两边距离相等可得PD=PE,PC=PE,从而得到PC=PD,然后根据线段中点的定义解答;(2)过点P作PE⊥AB于E,根据平行线的性质求出∠C=90°,即PC⊥BC,利用AAS证明△PBE≌△PBC,得出∠EPB=∠CPB=35°,PE=PC,由PC=PD,等量代换得到PD=PE,再根据HL证明Rt△PAD≌Rt△PAE,得出∠APD=∠APE=55°,那么∠PAD=90°﹣∠APD=35°.
【考点精析】利用角平分线的性质定理对题目进行判断即可得到答案,需要熟知定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若x=1是方程x2﹣5x+c=0的一个根,则这个方程的另一个根是( )
A.﹣2
B.2
C.4
D.﹣5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的方程x2﹣2x+c=0有两个相等的实数根,则c的值为( )
A.1
B.﹣1
C.4
D.﹣4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:

组号

分组

频数

6≤m<7

2

7≤m<8

7

8≤m<9

a

9≤m≤10

2

(1)求a的值.

(2)若用扇形统计图来描述,求分数在8≤m<9内所对应的扇形的圆心角的度数.

(3)将在第一组内的两名选手记为A1A2,在第四组内的两名选手记为B1B2, 从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】使不等式x-5>3x-1成立的x的值中,最大整数为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.
(1)若∠AOE=40°,求∠BOD的度数;
(2)若∠AOE=α,求∠BOD的度数.(用含α的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次植树活动中,某班共有a名男生每人植树3棵,共有b名女生每人植树2棵,则该班同学一共植树棵.(用含a,b的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若|x|=3,|y|=4,则|x+y|的值为(  )

A. 7 B. ﹣7 C. 7或1 D. 以上都不对

查看答案和解析>>

同步练习册答案