精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,矩形ABCD的顶点A60),C04)点D与坐标原点O重合,动点P从点O出发,以每秒2个单位的速度沿OABC的路线向终点C运动,连接OPCP,设点P运动的时间为t秒,△CPO的面积为S,下列图象能表示tS之间函数关系的是(  )

A.

B.

C.

D.

【答案】B

【解析】

根据动点运动的起点位置、关键转折点,结合排除法,可得答案.

解:∵动点P从点O出发,以每秒2个单位的速度沿OABC的路线向终点C运动,△CPO的面积为S

∴当t0时,OP0,故S0

∴选项CD错误;

t3时,点P和点A重合,

∴当点P在从点A运动到点B的过程中,S的值不变,均为12,故排除A,只有选项B符合题意.

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(40)B(02),点P(aa)

1)当a2时,将AOB绕点P(aa)逆时针旋转90°DEF,点A的对应点为D,点O的对应点为E,点B的对应点为点F,在平面直角坐标系中画出DEF并写出点D的坐标

2)作线段AB关于P点的中心对称图形(点AB的对应点分别是GH),若四边形ABGH是正方形,则a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,网格中每个小正方形边长为1,△ABC的顶点都在格点(网格线的交点)上.将△ABC向左平移2格,再向上平移3格,得到△ABC′.

(1)请在图中画出平移后的△ABC′;

(2)画出平移后的△ABC′的中线BD′;

(3)若连接BB′,CC′,则这两条线段的关系是_______

(4)ABC的面积为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,,点轴上,将三角形沿轴负方向平移,平移后的图形为三角形,且点的坐标为.

1)直接写出点的坐标为

2)在四边形中,点从点出发,沿“”移动,若点的速度为每秒1个单位长度,运动时间为秒,回答下问题:

①求点在运动过程中的坐标(用含的式子表示,写出过程);

②当 秒时,点的横坐标与纵坐标互为相反数;

③当秒时,设,试问之间的数量关系能否确定?若能,请用含的式子表式,写出过程;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校准备租用一批汽车,现有甲、乙两种客车,甲种客车每辆载客量45人,乙种客车每辆载客量30.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760.1辆甲种客车和1辆乙种客车的租金分别是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】推理填空:

如图,EFAD,∠1=∠2,∠BAC70°.将求∠AGD的过程填写完整.

因为EFAD

所以∠2   .(   

又因为∠1=∠2

所以∠1=∠3.(   

所以AB   .(   

所以∠BAC+   180°(   

又因为∠BAC70°,

所以∠AGD   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,∠ABC=45°OC∥ADADBC的延长线于DABOCE

(1)求证:AD是⊙O的切线;

(2)若⊙O的直径为6,线段BC=2,求∠BAC的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣2(k+1)x+k2﹣2k﹣3x轴有两个交点.

(Ⅰ)求k取值范围;

(Ⅱ)当k取最小整数时,此二次函数的对称轴和顶点坐标;

(Ⅲ)将()中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你求出新图象与直线y=x+m有三个不同公共点时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为等边三角形,相交于点于点

(1)求证:

(2)求的长.

查看答案和解析>>

同步练习册答案