精英家教网 > 初中数学 > 题目详情
11.如图,⊙O为△AEF的外接圆,BC与⊙O相切于点D,交AE,AF的延长线于点B,C.AD平分∠BAC,EF交AD于点G,若$\frac{EG}{GF}$=$\frac{4}{3}$.求$\frac{BD}{CD}$的值.

分析 连接DF,根据弦切角定理得到∠DAC=∠FDC,根据圆周角定理得到∠DAB=∠DFE,证明EF∥BC,根据相似三角形的性质计算即可.

解答 解:连接DF,
∵BC与⊙O相切,
∴∠DAC=∠FDC,
由圆周角定理得,∠DAB=∠DFE,
∵AD平分∠BAC,
∴∠DAC=∠DAB,
∴∠DFE=∠FDC,
∴EF∥BC,
∴$\frac{EG}{BD}$=$\frac{AG}{AD}$,$\frac{GF}{DC}$=$\frac{AG}{AD}$,
∴$\frac{EG}{BD}$=$\frac{GF}{DC}$,即$\frac{BD}{CD}$=$\frac{EG}{GF}$=$\frac{4}{3}$.

点评 本题考查的是相似三角形的判定和性质、切线的性质、圆周角定理的应用,掌握同弧或等弧所对的圆周角相等、相似三角形的判定定理和性质定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.海南省某种植园收获香蕉20000千克,其中香牙蕉12000千克、黄帝蕉8000千克,准备运往海口与文昌销售;根据市场供需,海口需要香蕉15000千克,文昌需要香蕉5000千克,海口与文昌两地的香蕉售价如下表所示:
价格       品种
地区
黄帝蕉
(元/千克)
香牙蕉
(元/千克)
海口54.8
文昌4.23.6
(1)若该种植园供应海口市的香牙蕉与黄帝蕉的比是2:1,请问该种植园供应文昌市的香牙蕉与黄帝蕉各是多少千克?
(2)若海口与文昌的香蕉都能在保质期内销售完,请你设计一种销售方案,使销售的收入最大,并估算出获得的最大销售收入.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,AC,OD交于点P,其中OA=4,OB=3.
(1)则OD所在直线的解析式为y=$\frac{7}{4}$x;
(2)则△AOP的面积为$\frac{224}{53}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:AD是△ABC的角平分线,DE∥AB,DF∥AC,交AB、AC分别为F,E,试判断四边形AFDE是怎样的四边形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.在Rt△ACB中,∠ACB=90°,点D在边BC上,连接AD,以点D为顶点,AD为一边作等边△ADE,连接BE,若BC=7,BE=4,∠CBE=60°,则∠EAB的正切值为$\frac{2\sqrt{3}}{11}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.定义运算“☆”,其规则为a☆b=$\frac{a+b}{a}$,则方程(4☆3)☆x=13的解为x=21.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.合肥地铁1号线于2016年12月26日正式开通,开通当日迎来15万人次的客流量.将15万用科学记数法表示为1.5×105

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,一张长方形纸片的长AD=4,宽AB=1.点E在边AD上,点F在BC边上,将四边形 ABFE沿直线EF翻折后,点B落在边AD的中点G处,则EG等于(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{5}{4}$D.$\frac{17}{8}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知⊙O的半径为6cm,点P在⊙O外,则OP>6cm(填“>”、“<”或“=”)

查看答案和解析>>

同步练习册答案