精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3

(1)求反比例函数的解析式;

(2)求cos∠OAB的值;

(3)求经过C、D两点的一次函数解析式.

【答案】(1);(2);(3)

【解析】

试题分析:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;

(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,通过解直角三角形即可得出结论;

(3)由m的值,可找出点C、D的坐标,设出过点C、D的一次函数的解析式为y=ax+b,由点C、D的坐标利用待定系数法即可得出结论.

试题解析:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),∵点C为线段AO的中点,∴点C的坐标为(2,).

∵点C、点D均在反比例函数的函数图象上,∴,解得:反比例函数的解析式为

(2)∵m=1,∴点A的坐标为(4,4),∴OB=4,AB=4.

在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==,cos∠OAB==

(3))∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).

设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:经过C、D两点的一次函数解析式为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列运算正确的是( )

A. 2a2+a=3a3B. (m2)3=m5C. (x+y)2=x2+y2D. a6÷a3=a3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.
(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.
(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作探究:已知在纸面上有一数轴(如图所示), 操作一:
(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合; 操作二:
(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题: ①5表示的点与数表示的点重合;
②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点O是△ABC的两条角平分线的交点,

(1)若∠A=30°,则∠BOC的大小是
(2)若∠A=60°,则∠BOC的大小是
(3)若∠A=n°,则∠BOC的大小是多少?试用学过的知识说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个公共顶点,并且一个角的两边分别是另一个角的两边的_______,具有这种位置关系的两个角互为对顶角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数: ;点P表示的数用含t的代数式表示为
(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?
(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b(k<0)与反比例函数的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)

(1)求反比例函数的解析式;

(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在六边形的顶点处分别标上数1, 2, 3, 4,5, 6,能否使任意三个相邻顶点处的三个数之和
(1)大于9?
(2)大于10?如能,请在图中标出来;若不能,请说明理由.

查看答案和解析>>

同步练习册答案