精英家教网 > 初中数学 > 题目详情

【题目】如果在等腰三角形中有一个角的外角为140°,则该等腰三角形的三个内角分别是_____.

【答案】40°,70°,70°或40°,40°,100°

【解析】

因为已知的外角没有指明是哪个顶点对应的外角,故这个外角可以为顶角的外角,也可以为底角的外角,所以分140°为等腰三角形顶角的外角和140°为等腰三角形底角的外角两种情况考虑,根据邻补角定义分别求出外角的补角,然后根据等腰三角形的等边对等角及三角形的内角和定理即可求出其他角的度数,得到正确答案.

解:当140°为等腰三角形顶角的外角时,画出图形,如图所示:


根据图形外角∠DAC=140°,∴∠BAC=180°-140°=40°
AB=AC,∴∠B=C==70°
则等腰三角形的三个内角分别为:40°70°70°

140°为等腰三角形底角的外角时,画出图形,如图所示:

根据图形外角∠ACD=140°

∴∠ACB=180°-140°=40°
AB=AC

∴∠B=ACB=40°,∠A=180°-40°-40°=100°
则等腰三角形的三个内角分别为:40°40°100°
综上,等腰三角形的内角分别为:40°70°70°40°40°100°
故答案为:40°70°70°40°40°100°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,M是弦AB的中点,过点B作⊙O的切线,与OM延长线交于点C.

(1)求证:∠A=C;

(2)若OA=5,AB=8,求线段OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,EAB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AMDE的位置关系.

探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:

证明:∵BE=AB,∴AE=2AB.

∵AD=2AB,∴AD=AE.

四边形ABCD是矩形,∴AD∥BC.

.(依据1)

∵BE=AB,∴.∴EM=DM.

AM△ADEDE边上的中线,

∵AD=AE,∴AM⊥DE.(依据2)

∴AM垂直平分DE.

反思交流:

(1)①上述证明过程中的依据1”“依据2”分别是指什么?

试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;

(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;

探索发现:

(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若ABC内一点P满足∠PAC=PCB=PBA,则称点PABC的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究三角形几何的热潮.已知ABC中,CA=CB,∠ACB=120°PABC的布罗卡尔点,若PA=,则PB+PC=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD在平面直角坐标系中,点A18),B16),C76),点XY分别在xy轴上.

1)请直接写出D点的坐标

2)连接OBODODBC于点E,∠BOY的平分线和∠BEO的平分线交于点F,若∠BOEn,求∠OFE的度数.

3)若长方形ABCD以每秒个单位的速度向下运动,设运动时间为t秒,问在第一象限内是否存在某一时刻t,使△OBD的面积等于长方形ABCD的面积的?若存在,请求出t的值,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.

(1)求甲、乙两种型号的机器人每台的价格各是多少万元;

(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ABC、∠ACB的角平分线交于点OMN过点O,且MNBC,分别交ABAC于点MN.若BM3cmCN2cm,则MN_____cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题引入:

(1)如图1,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC= (α表示);

如图2,CBO=ABC,BCO=ACB,A=α,则∠BOC= (α表示);

拓展研究:

(2)如图3,CBO=DBC,BCO=ECB,A=α,猜想∠BOC= (α表示),并说明理由;

(3)BO、CO分别是△ABC的外角∠DBC、ECBn等分线,它们交于点O,CBO=DBC,BCO=ECB,A=α,请猜想∠BOC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于一元二次方程下列说法:①当时,则方程一定有一根为;②若则方程一定有两个不相等的实数根;③若是方程的一个根,则一定有;④若,则方程有两个不相等的实数根。其中正确的是(

A.①②B.①③C.①②④D.②③④

查看答案和解析>>

同步练习册答案