【题目】如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
A. 4 B. 3 C. 2 D.
【答案】B
【解析】
分析: 首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.
详解: 把x=1代入得:y=1,
∴A(1,1),把x=2代入得:y=,
∴B(2, ),
∵AC//BD// y轴,
∴C(1,K),D(2,)
∴AC=k-1,BD=-,
∴S△OAC=(k-1)×1,
S△ABD= (-)×1,
又∵△OAC与△ABD的面积之和为,
∴(k-1)×1+ (-)×1=,解得:k=3;
故答案为B.
科目:初中数学 来源: 题型:
【题目】为实现教育均衡发展,打造新优质学校,瑶海区计划对A、B两类薄弱学校全部进行改造,根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元,求改造一所A类学校和一所B类学校所需的资金分别是多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,请描出A(-3,-2),B(2,-2),C(3,1),D(-2,1)四个点。
(1)线段AB、CD有什么关系?
(2)顺次连接A、B、C、D四点组成的图形是什么图形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小张骑车往返于甲、乙两地,距甲地的路程y(千米)与时间x(时)的函数图象如图所示.
(1)小张在路上停留 小时,他从乙地返回时骑车的速度为 千米/时;
(2)小王与小张同时出发,按相同路线匀速前往乙地,距甲地的路程y(千米)与时间x(时)的函数关系式为y=10x+10.请作出此函数图象,并利用图象回答:小王与小张在途中共相遇 次;
(3)请你计算第三次相遇的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)5a2b÷×2ab2;
(2)[(x+2y)2-(x+y)(x-y)-5y2]÷2x;
(3)(-3.6×1010)÷(-2×102)2;
(4)(2a-b+3)(2a-3+b).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】去学校食堂就餐,经常会在一个买菜窗口前等待. 经调查发现,同学的舒适度指数y与等待时间x(分)之间存在如下的关系:y=,求:
(1)若等待时间x=5分钟时,求舒适度y的值;
(2)舒适度指数不低于10时,同学才会感到舒适.函数y=(x>0)的图象如图,请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O,下列条件中,不能说明AB⊥CD的是( )
A. ∠AOD=90°
B. ∠AOC=∠BOC
C. ∠BOC+∠BOD=180°
D. ∠AOC+∠BOD=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,药物喷洒完后,y与x成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.
(1)求喷洒药物时和喷洒完后,y关于x的函数关系式;
(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?
(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com