精英家教网 > 初中数学 > 题目详情

【题目】如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,则圆心A到弦BC的距离等于

【答案】3
【解析】解:作AH⊥BC于H,作直径CF,连结BF,如图,
∵∠BAC+∠EAD=180°,
而∠BAC+∠BAF=180°,
∴∠DAE=∠BAF,
=
∴DE=BF=6,
∵AH⊥BC,
∴CH=BH,
∵CA=AF,
∴AH为△CBF的中位线,
∴AH= BF=3.
∴点A到弦BC的距离为:3.
所以答案是:3.

【考点精析】通过灵活运用垂径定理和圆心角、弧、弦的关系,掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,AB=BC=2 ,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则BE的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,A=C=90°,BE、DF分别是ABC、ADC的平分线.求证:

(1)、1+2=90°;(2)、BEDF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;

(2)若ABAC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4cm,BC=3cm,动点P从点A出发,沿AB以1cm/s的速度向终点B匀速运动,同时点Q从点B出发,沿B→C→D以1cm/s的速度向终点D匀速运动,当两个点中有一个到达终点后,另一个点也随之停止.连接PQ,设点P的运动时间为x(s),PQ2=y(cm2).

(1)当点Q在边CD上,且PQ=3时,求x的值;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)直接写出y随x增大而增大时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AEBD交于点F,

(1)如图1,若∠ACD=60°,则∠AFB=   ;如图2,若∠ACD=90°,则∠AFB=   ;如图3,若∠ACD=120°,则∠AFB=   

(2)如图4,若∠ACD=α,则∠AFB=   (用含α的式子表示);

(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFBα的有何数量关系?并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).

(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.
(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.
(3)若将△A1B1C绕某一点旋转可得到△A2B2C2 , 请直接写出旋转中心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的分式方程.

(1)若方程的增根为x=2,求a的值;

(2)若方程有增根,求a的值;

(3)若方程无解,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣4x+3.
(1)把这个二次函数化成y=a(x﹣h)2+k的形式;
(2)写出二次函数的对称轴和顶点坐标;
(3)求二次函数与x轴的交点坐标;
(4)画出这个二次函数的图象;

(5)观察图象并写出y随x增大而减小时自变量x的取值范围.
(6)观察图象并写出当x为何值时,y>0.

查看答案和解析>>

同步练习册答案