精英家教网 > 初中数学 > 题目详情

如图,在等腰梯形ABCD中,AB∥DC,∠D=115°.将线段BC绕点B顺时针旋转,使点C与DC延长线上的E点重合.
(1)求∠E的度数;
(2)判断四边形ABED的形状,并说明理由.

解:(1)∵梯形ABCD是等腰梯形,∴∠A=∠ABC,
∵BE=BC,
∴∠E=∠BCE
又∵AB∥DC
∴∠ABC=∠BCE,
∴∠E=∠A=180°-115°=65°;

(2)四边形ABCD为平行四边形.
∵等腰梯形ABCD中,
∴AD∥BC,∠ABC=∠A,
∴∠BCE=∠A,∠A+∠D=180°,
又∵BE=BC,∴∠E=∠A,
∴∠E+∠D=180°,
∴BE∥AD.
∵DE∥BC,
∴四边形ABDE是平行四边形.
分析:(1)由题意可知,∠BEC=∠BCE,而等腰梯形ABCD中,AB∥DC,所以∠A=∠B=∠BCE,从而得出∠A=∠E,即可求得∠E的度数;
(2)根据等边对等角,可得∠E=∠A,则易得∠E+∠D=180°,即得BE∥AD,根据有两边分别平行的四边形是平行四边形,即可得.
点评:此题考查了等腰梯形的性质、等腰三角形的性质以及平行四边形的判定等知识.解题的关键是注意仔细识图.注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存精英家教网在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,在等腰梯形ABCD中,AD∥BC,AB=DC,E为AD的中点,求证:BE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=3EA,CF=3FD.
求证:∠BEC=∠CFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:044

如图,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.

  

(1)分别求出当点Q位于AB、BC上时,S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当线段PQ将梯形AB∥⊥CD分成面积相等的两部分时,x的值是多少?

(3)当(2)的条件下,设线段PQ与梯形AB∥⊥CD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,一定能平分梯形的面积?(只要求说出条件,不需要证明)

查看答案和解析>>

同步练习册答案