精英家教网 > 初中数学 > 题目详情
已知:如图,AC=AB,AE=AD,∠1=∠2.求证:∠3=∠4.
分析:将∠3和∠4分别放在△AEC和△ADB中,只需证明两三角形全等可得出∠3=∠4,分析条件:AC=AB,AE=AD,差一个夹角,故由∠1=∠2,在等式两边都加上∠BAC,得到∠EAC=∠DAB,利用SAS可得出两三角形全等,利用全等三角形的对应角相等可得证.
解答:证明:∵∠1=∠2,
∴∠1+∠ABC=∠2+∠BAC,即∠EAC=∠DAB,
在△AEC和△ADB中,
AC=AB
∠EAC=∠DAB
AE=AD

∴△AEC≌△ADB(SAS),
∴∠3=∠4.
点评:此题考查了全等三角形的判定与性质,利用了等式的性质,熟练掌握全等三角形的判定与性质是本题证明的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

29、已知:如图,AC=BD,DF=CE,∠ECB=∠FDA.求证:AF=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AC=DF,AC∥FD,AE=DB,则根据
SAS
(填上SSS、SAS、ASA或AAS)可得△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AC是⊙O的直径,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切线,E精英家教网是切点,
求证:(1)OD∥AB;
(2)2DE2=BE•OD;
(3)设BE=2,∠ODE=a,则cos2a=
1OD

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知:如图,AC、BD交于O点,OA=OC,OB=OD、则不正确的结果是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AC平分∠BAD,CE⊥AB于E点,CF⊥AD于F点,在AB上有一点M,且CM=CD.
(1)请你用尺规作出点M的位置,
(2)若AF=12,DF=4,求AM的长,
(3)试说明∠CDA与∠CMA的关系.

查看答案和解析>>

同步练习册答案