精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.

(1)求抛物线的函数解析式;
(2)求△MCB的面积;
(3)根据图形直接写出使一次函数值大于二次函数值的x的取值范围.

【答案】
(1)解:∵A(﹣1,0),C(0,5),D(1,8)三点在抛物线y=ax2+bx+c上,

解方程组得

∴抛物线的解析式为y=﹣x2+4x+5


(2)解:连接OM,如图,

∵y=﹣x2+4x+5=﹣(x﹣2)2+9,

∴M(2,9),

∵抛物线的对称轴为直线x=2,

∴B(5,0),

∴SBCM=SOCM+SBOM﹣SOBC

= ×5×2+ ×5×9﹣ ×5×5

=15


(3)解:x<0或x>2
【解析】(1)把A点、C点和D点坐标代入y=ax2+bx+c得到关于a、b、c的方程组,然后解方程求出a、b、c即可得到抛物线解析式;(2)连接OM,如图,先把(1)中解析式配成顶点式得到M(2,9),再利用对称性得到B(5,0),然后利用SBCM=SOCM+SBOM﹣SOBC进行计算;(3)观察函数图象,写出一次函数图象在抛物线上方所对应的自变量的范围即可.
【考点精析】根据题目的已知条件,利用抛物线与坐标轴的交点的相关知识可以得到问题的答案,需要掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).
(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m的取值范围;若不存在,请说明理由.
(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程x2+(8﹣4m)x+4m2=0
(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;
(2)是否存在实数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们可以通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据 , 易证△AFG≌ , 得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在双曲线y= 上,点B在双曲线y= (k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为( )

A.12
B.10
C.8
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校在落实国家“营养餐”工程中,选用了A,B,C,D种不同类型的套餐.实行一段时间后,学校决定在全校范围内随机抽取部分学生对“你喜欢的套餐类型(必选且只选一种)”进行问卷调查,将调查情况整理后,绘制成如图所示的两个统计图.

请你根据以上信息解答下列问题:
(1)在这次调查中,一共抽取了名学生;
(2)请补全条形统计图;
(3)如果全校有1200名学生,请你估计其中喜欢D套餐的学生的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是(
A.(5,3)
B.(3,5)
C.(5,4)
D.(4,5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与 交于点D,以O为圆心,OC的长为半径作 交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为 . (结果保留π)

查看答案和解析>>

同步练习册答案