如图,直线与轴相交于点A,与轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线与轴交于点P,若△ABP的面积为,试求点P的坐标.
(1)B(0,3)、A(﹣,0);(2)P点坐标为(1,0)或(﹣4,0).
解析试题分析:(1)把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;
(2)由B、A的坐标易求:OB=3,OA=.然后由三角形面积公式得到S△ABP=AP•OB=,则AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,由此可以求得m的值.
试题解析:(1)由x=得:y=3,即:B(0,3).
由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0);
(2)由B(0,3)、A(﹣,0)得:OB=3,OA=
∵S△ABP=AP•OB=
∴AP=,
解得:AP=.
设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,
解得:m=1或﹣4,
∴P点坐标为(1,0)或(﹣4,0).
.
考点:一次函数图象上点的坐标特征.
科目:初中数学 来源: 题型:解答题
设,是任意两个不等实数,我们规定:满足不等式≤≤的实数的所有取值的全体叫做闭区间,表示为. 对于一个函数,如果它的自变量与函数值满足:当m≤≤n时,有m≤≤n,我们就称此函数是闭区间上的“闭函数”.
(1)反比例函数是闭区间上的“闭函数”吗?请判断并说明理由;
(2)若一次函数是闭区间上的“闭函数”,求此函数的表达式;
(3)若二次函数是闭区间上的“闭函数”,直接写出实数, 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,直线y=-x+6分别与x轴、y轴交于A、B两点;直线y=x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).
(1)求点C的坐标;
(2)当0<t<5时,求S与t之间的函数关系式,并求S的最大值;
(3)当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某地区冬季干旱,康平社区每天需从外地调运饮用水60吨.有关部门紧急部署,从甲、乙两水厂调运饮用水到供水点,甲厂每天最多可调出40吨,乙厂每天最多可调出45吨.从两水厂运水到康平社区供水点的路程和运费如下表:
| 到康平社区供水点的路程(千米) | 运费(元/吨·千米) |
甲厂 | 20 | 4 |
乙厂 | 14 | 5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知二次函数y=x-4x+3的图象交x轴于A,B两点(点A在点B的左侧), 交y轴于点C.
(1)求直线BC的解析式;
(2)点D是在直线BC下方的抛物线上的一个动点,当△BCD的面积最大时,求D点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知一次函数的图象经过点(,),且与正比例函数的图象相交于点(4,),
求:(1)的值;
(2)、的值;
(3)求出这两个函数的图象与轴相交得到的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
一次函数的图象与反比例函数的图象交于A(1,4)、B(﹣2,m)两点,
(1)求一次函数和反比例函数的关系式;
(2)画出草图,并根据草图直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某公司准备与汽车租赁公司签订租车合同.以每月用车路程x(km)计算,甲汽车租赁公司的月租费元,乙汽车租赁公司的月租费是元.如果、与x之间的关系如图所示.
(1)求、与x之间的函数关系
(2)怎样选用汽车租赁比较合算?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,函数的图象与函数()的图象交于点A(2,1)、B,与y轴交于点C(0,3).
(1)求函数的表达式和点B的坐标;
(2)观察图象,比较当x>0时与的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com