【题目】如图,∠AOB的平分线为OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线.试说明:
(1)∠MON=(∠BON-∠AON);
(2)∠MOG=(∠AOG+∠BOG).
【答案】(1)证明见解析;(2)证明见解析.
【解析】根据角平分线定义和角的和差关系,得
(1)∠BON-∠AON=∠BOM+∠MON-∠AON=(∠BOM-∠AON)+∠MON=∠MON+∠MON=2∠MON;
(2)∠AOG+∠BOG=∠AOB+∠BOG+∠BOG=2∠MOB+2∠BOG=2(∠MOB+∠BOG)=2∠MOG.
解:(1)因为,∠BON=∠BOM+∠MON,
∠BON-∠AON
=∠BOM+∠MON-∠AON
=(∠BOM-∠AON)+ ∠MON
=∠MON+∠MON
=2∠MON,
所以,∠MON=(∠BON-∠AON);
(2)因为,∠AOG+∠BOG
=∠AOB+∠BOG+∠BOG
=2∠MOB+2∠BOG
=2(∠MOB+∠BOG)
=2∠MOG,
所以,∠MOG=(∠AOG+∠BOG).
科目:初中数学 来源: 题型:
【题目】如图所示,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.
(1)∠AOD的余角是 ______ ,∠COD的余角是 ______
(2)OE是∠BOC的平分线吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;
(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?并说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知线段AB,请按要求完成下列问题.
(1)用直尺和圆规作图,延长线段AB到点C,使BC=AB;反向延长线段AB到点D,使AD=AC;
(2)如果AB=2cm;①求CD的长度;②设点P是线段BD的中点,求线段CP的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是∠BAC的平分线,且∠B=∠ADB,过点C作CM垂直于AD的延长线,垂足为M.
(1)若∠DCM=α,试用α表示∠BAD;
(2)求证:AB+AC=2AM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF 与AB、CD的延长线分别
交于E、F.
(1)证明:△BOE≌△DOF.
(2)当EF与AC满足什么条件时,四边形AECF是菱形,为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com