精英家教网 > 初中数学 > 题目详情

如图6,四边形是边长为的正方形,长方形的宽,长.将长方形绕点顺时针旋转15°得到长方形(如图7),这时相交于点

(1)求的度数;

(2)在图7中,求两点间的距离;

(3)若把长方形绕点再顺时针旋转15°得到长方形,请问此时点B在矩形的内部、外部、还是边上?并说明理由.

解:(1)设的交点为,∵,,

,又,……………………1分

.……………3分

(2)∵正方形的边长为,∴.

连结的交点为,∵长方形,长,∴,故.…………4分

,∴,∴,.∴是等腰三角形斜边上的中线,∴.…………5分

在Rt△中,.

两点间的距离为5. …………………………………6分

(3)点B在矩形的外部. ………………………7分

理由如下:由题意知,设的交点为,则在Rt△中,,∴.     …………………………………8分

,即,

∴点B在矩形的外部. …………………………10分

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,点P是边长为4的正方形ABCD的边AD上一点并且不与点A、D重合,MN是线段BP的精英家教网垂直平分线,与AB、BP、CD分别交于点M、O、N,设AP=x.
(1)求BM(结果用含有x的代数式表示);
(2)请你判断四边形MNCB的面积是否有最小值?若有最小值,求出使其面积取得最小值时的x的值并求出面积的最小值;若没有最小值,说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•保定一模)如图,点E是边长为1的正方形ABCD的对角线BD上的一个动点(不与B、D两点重合),过点E作直线MN∥DC,交AD于M,交BC于N,连接AE,作EF⊥AE于E,交直线CB于F.
(1)如图1,当点F在线段CB上时,通过观察或测量,猜想△AEF的形状,并证明你的猜想;
(2)如图2,当点F在线段CB的延长线上时,其它条件不变,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由;
(3)在点E从点D向点B的运动过程中,四边形AFNM的面积是否会发生变化?若发生了变化,请说明理由;若没有发生变化,请求出其面积的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.点P是边长为1的正方形ABCD对角线AC上的一个动点(P不与A,C重合)且PE=PB 
(1)求证:PE⊥PD.
(2)设AP=x,四边形PECD的面积为y,求出y与x的关系式,并写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:点P是边长为1的正方形内(不在边上)任意一点,P和正方形各顶点相连后把正方形分成4块,其中①③可以重新拼成一个四边形,重拼后的四边形周长的最小值是
2
2
2
2

查看答案和解析>>

同步练习册答案