【题目】如图,Rt△ABC,∠BAC=90°,点D,E分别为边AB,BC的中点,点F在CA延长线上,且∠FDA=∠B.
(1)求证:AF=DE;
(2)若AC=3,BC=5,求四边形AEDF的周长.
【答案】(1)见解析;(2)8
【解析】
(1)根据中位线的性质可知DE∥CF,再根据直角三角形斜边上的中线等于斜边的一半可得AE=BE,进而推出∠BAE=∠B=∠FDA,推出AE∥DF,然后根据平行四边形的判定和性质得出结论;
(2)由平行四边形的性质可知AF=ED,AE=DF,根据中位线的性质可知ED=AC,再根据直角三角形斜边上的中线等于斜边的一半可得AE=BE=BC,根据平行四边形的周长=2DE+2AE即可求出答案.
解:∵Rt△ABC,∠BAC=90°,点D,E分别为边AB,BC的中点,
∴ED∥AC,AE=BE,
∴∠BAE=∠B
∵∠B=∠FDA,
∴∠BAE =∠FDA,
∴AE∥DF,
∴四边形AEDF是平行四边形,
∴AF=DE;
(2)∵四边形AEDF是平行四边形,
∴ED=AF
∵Rt△ABC,∠BAC=90°,点D,E分别为边AB,BC的中点,
∴ED=AC,AE=BE=BC,
∵AC=3,BC=5,
∴平行四边形AEDF的周长=2DE+2AE=AC+BC=3+5=8
科目:初中数学 来源: 题型:
【题目】如图,已知平行四边形ABCD,点O为AD中点,点E在BD上,连接EO并延长交BC于点F,连接BE,DF.
(1)求证:四边形BEDF是平行四边形;
(2)若AB=3,AD=6,∠BAD=135°,当四边形BEDF为菱形时,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.
(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满,当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的正整数倍)
(1) 设一天订住的房间数为y,直接写出y与x的函数关系式
(2) 设宾馆一天的利润为w元,求w与x的函数关系式
(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线C1:
(1) ① 无论m取何值,抛物线经过定点P
② 随着m的取值的变化,顶点M(x,y)随之变化,y是x的函数,则点M满足的函数C2的关系式为__________________
(2) 如图1,抛物线C1与x轴仅有一个公共点,请在图1画出顶点M满足的函数C2的大致图象,平行于y轴的直线l分别交C1、C2于点A、B.若△PAB为等腰直角三角形,判断直线l满足的条件,并说明理由
(3) 如图2,二次函数的图象C1的顶点M在第二象限、交x轴于另一点C,抛物线上点M与点P之间一点D的横坐标为-2,连接PD、CD、CM、DM.若S△PCD=S△MCD,求二次函数的解析式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是二次函数y=ax2+bx+c的部分x,y的对应值:
x | … | -1 | - | 0 | 1 | 2 | 3 | … | |||
y | … | 2 | -1 | - | -2 | - | -1 | 2 | … |
(1)此二次函数图象的顶点坐标是 ;
(2)当抛物线y=ax2+bx+c的顶点在直线y=x+n的下方时,n的取值范围是 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上有三个点A、B、C,表示的数分别是-4、-2、3,请回答:
(1)若C、B两点的距离与A、B两点距离相等,则需将点C向左移动________个单位;
(2)若移动A、B、C三点中的两点,使三个点表示的数相同,移动方法有________种,其中移动所走的距离之和最小的是________个单位;
(3)若在B处有一小青蛙,一步跳一个单位长,小青蛙第一次先向左跳一步,第2次向右跳3步,第3次向再向左跳5步,第4次再向右跳7步……,按此规律继续下去,那么跳第100次时落脚点表示的数是________;
(4)若有两只小青蛙M、N,它们在数轴上的点表示的数分别为整数x、y,且|x-2|+|y+3|=2,求两只青蛙M、N之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:b是最小的正整数,且a、b满足+=0,请回答问题:
(1)请直接写出a、b、c的值;
(2)数轴上a、b、c所对应的点分别为A、B、C,点M是A、B之间的一个动点,其对应的数为m,请化简(请写出化简过程);
(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动.若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,根据图中信息解答下列问题:
(1)关于x的不等式ax+b>0的解集是 ;
(2)关于x的不等式mx+n<1的解集是 ;
(3)当x满足 的条件时,y1y2;
(4)当x满足 的条件时,0<y2<y1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com