精英家教网 > 初中数学 > 题目详情

已知△ABC中,∠A=α,点D、E、F分别在BC、AB、AC上.
(1)如图1,若BE=BD,CD=CF,则∠EDF=______;
(2)如图2,若BD=DE,DC=DF,则∠EDF=______;
(3)如图3,若BD=CF,CD=BE,AB=AC,则∠EDF=______;
(2)如图4,若DE⊥AB,DF⊥BC,AB=AC,则∠EDF=______.

解:(1)∵∠A=α,
∴∠B+∠C=180°-α,
∵BE=BD,CD=CF,
∴∠BED=∠BDE,∠CFD=∠CDF,
∴∠BDE+∠CDF=(180°-∠B)+(180°-∠C)=180°-(∠B+∠C)=90°+α,
∴∠EDF=180°-(∠BDE+∠CDF)=90°-α;

(2)∵∠A=α,
∴∠B+∠C=180°-α,
∵BD=DE,DC=DF,
∴∠BED=∠B,∠CFD=∠C,
∴∠BDE=180°-2∠B,∠CDF=180°-2∠C,
∴∠BDE=180°-(∠BED+∠CDF)=2(∠B+∠C)-180°=180°-2α;

(3)∵AB=AC,∠A=α,
∴∠B=∠C=90°-α,
在△BDE和△CFD中,

∴△BDE≌△CFD(SAS),
∴∠BED=∠CDF,
∵∠B+∠BDE+∠BED=180°,∠BDE+∠CDF+∠EDF=180°,
∴∠EDF=∠B=90°-α;

(4)∵AB=AC,∠A=α,
∴∠B=∠C=90°-α,
∵DE⊥AB,DF⊥BC,
∴∠BDE+∠EDF=90°,∠B+∠BDE=90°,
∴∠EDF=∠B=90°-α.
故答案为:(1)90°-α,(2)180°-2α,(3)90°-α,(4)90°-α.
分析:(1)由△ABC中,∠A=α,可求得∠B+∠C的值,又由BE=BD,CD=CF,根据等腰三角形的性质,即可求得∠BDE+∠CDF的值,继而求得答案;
(2)由△ABC中,∠A=α,可求得∠B+∠C的值,又由BD=DE,DC=DF,根据等腰三角形的性质,即可求得∠BDE+∠CDF的值,继而求得答案;
(3)由△ABC中,∠A=α,AB=AC,可求得∠B的值,易证得△BDE≌△CFD,继而可求得∠EDF=∠B;
(4)由△ABC中,∠A=α,AB=AC,可求得∠B的值,又由DE⊥AB,DF⊥BC,可求得∠EDF=∠B.
点评:此题考查了等腰三角形的性质、全等三角形的判定与性质以及三角形内角和定理.此题难度适中,注意掌握方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分别是边AB、BC上的动点,且点P不与点A、B重合,点Q不与点B、C重合.
(1)在以下五个结论中:①∠CQP=45°;②PQ=AC;③以A、P、C为顶点的三角形全等于△PQB;④以A、P、C为顶点的三角形全等于△CPQ;⑤以A、P、C为顶点的三角形相似于△CPQ.一定不成立的是
 
.(只需将结论的代号填入题中的模线上).
(2)设AC=BC=1,当CQ的长取不同的值时,△CPQ是否可能为直角三角形?若可能,请说明所有的精英家教网情况;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,则四边形DBFE的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知△ABC中,AB=AC,以AB为直径作⊙O交BC于D,交AC于E,过D作DF⊥AC于F
(1)求证:DF是⊙O的切线;
(2)连接DE,且AB=4,若∠FDC=30°,试求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=3,AC=5,第三边BC的长为一元二次方程x2-9x+20=0的一个根,则该三角形为
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AB垂直平分线交AC于D,连接BE,若∠A=40°,则∠EBC=(  )

查看答案和解析>>

同步练习册答案