精英家教网 > 初中数学 > 题目详情

一次函数y=ax+b的图象分别与x轴,y轴交于点M,N,与反比例函数y=数学公式的图象交于点A,B,过点A分别作AC⊥x轴,AE⊥y轴,垂足分别为C,E,过点B分别作BF⊥x轴,BD⊥y轴,垂足分别为F、D,AC与BD交于K,连接CD.
(1)若点A,B在反比例函数y=数学公式的图象的同一分支上,如图1,试证明:AN=BM.
(2)若点A,B分别在反比例函数y=数学公式的图象的不同分支上,如图2,则AN与BM还相等吗?试证明你的结论.
作业宝

解:(1)连接AD,BC,过D作DP⊥AB,过C作CQ⊥AB,
S△ADC=AC.DK=x1.y1=k,
S△BDC=BD.CK=x2y2=k,
∴S△ADC=S△BDC,即S△ADK=S△BCK
∴S△ADB=S△ACB
∴DP=CQ,又DP∥CQ,又∠DPQ=90°,
∴四边形PQCD为矩形,
∴AB∥CD,
∵AC∥ND,
∴ANDC是平行四边形,
∴AN=CD,
同理:DC=BM,
∴AN=BM.


(2)相等.
AN与BM仍然相等.
∵S矩形AEDK=S矩形AEOC+S矩形ODKC,S矩形BKCF=S矩形BDOF+S矩形ODKC
又∵S矩形AEOC=S矩形BDOF=k,
∴S矩形AEDK=S矩形BKCF
∴AK•DK=BK•CK.
∴CK:AK=DK:BK.
∵∠K=∠K,
∴△CDK∽△ABK.
∴∠CDK=∠ABK.
∴AB∥CD
∵AC∥y轴,
∴四边形ANDC是平行四边形.
∴AN=CD.
同理BM=CD.
∴AN=BM.
分析:(1)本题需先连接AD,BC,得出S△ADC=S△BDC再证出ANDC是平行四边形,得出AN=CD和DC=BM,从而得出AN=BM.
(2)本题需先根据(1)的理由即可得出AN与BM相等即可.
点评:本题主要考查了反比例函数的综合应用,在解题时要能把反比例函数的图象与平行四边形的判定和性质相结合是本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象l与y=-x+3的图象关于y轴对称,直线l又与反比例函数y=
kx
交于点A(1,m),求m及k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知如图,一次函数y=ax+b图象经过点(1,2)、点(-1,6).求:
(1)这个一次函数的解析式;
(2)一次函数图象与两坐标轴围成的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=ax2+bx+c的图象如图所示,则在同一坐标系中,一次函数y=ax+c和反比例函数y=
a
x
的图象大致是(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=ax+b的图象与反比例函数y=
k
x
的图象交于A、B两点,与x轴交于点C,与y轴交于点D,已知OA=
10
,tan∠AOC=
1
3
,点B的坐标为(m,-2).
(1)求反比例函数及一次函数的解析式;
(2)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绍兴三模)在函数中,我们把关于x的一次函数y=ax+b与y=bx+a称为一对交换函数,如y=3x+1与与y=x+3是一对交换函数.称函数y=3x+1与是函数y=x+3的交换函数.
(1)求函数y=-
2
3
x+4与交换函数的图象的交点坐标;
(2)若函数y=-
2
3
x+b(b为常数)与交换函数的图象及纵轴所围三角形的面积为4,求b的值.

查看答案和解析>>

同步练习册答案