精英家教网 > 初中数学 > 题目详情

【题目】我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做等高底三角形,这条边叫做这个三角形的等底”.

(1)概念理解:

如图1,在ABC中,AC=6,BC=3,ACB=30°,试判断ABC是否是等高底三角形,请说明理由.

(2)问题探究:

如图2,ABC等高底三角形,BC等底,作ABC关于BC所在直线的对称图形得到A'BC,连结AA′交直线BC于点D.若点BAA′C的重心,求的值.

(3)应用拓展:

如图3,已知l1l2,l1l2之间的距离为2.“等高底ABC等底”BC在直线l1上,点A在直线l2上,有一边的长是BC倍.将ABC绕点C按顺时针方向旋转45°得到A'B'C,A′C所在直线交l2于点D.求CD的值.

【答案】(1)ABC等高底三角形;(2);(3)CD的值为,2,2.

【解析】

(1)过AADBCD,则△ADC是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:根据等高底三角形的概念即可判断.

(2)点B的重心,得到

根据勾股定理可得即可求出它们的比值.

(3)分两种情况进行讨论:①当时和②当.

(1)ABC等高底三角形;

理由:如图1,过AADBCD,则△ADC是直角三角形,∠ADC=90°,

∵∠ACB=30°,AC=6,

AD=BC=3,

即△ABC等高底三角形;

(2)如图2,∵△ABC等高底三角形,BC等底”,

∵△ABC关于BC所在直线的对称图形是

∴∠ADC=90°,

∵点B的重心,

由勾股定理得

(3)①当时,

Ⅰ.如图3,作AEBCEDFACF

等高底ABC等底BCl1l2l1l2之间的距离为2,.

BE=2,即EC=4,

∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C

∴∠DCF=45°,

l1l2

Ⅱ.如图4,此时△ABC等腰直角三角形,

∵△ABC绕点C按顺时针方向旋转45°得到

是等腰直角三角形,

②当时,

Ⅰ.如图5,此时△ABC是等腰直角三角形,

∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C

Ⅱ.如图6,作E,则

∴△ABC绕点C按顺时针方向旋转45°,得到时,点A'在直线l1上,

l2,即直线l2无交点,

综上所述,CD的值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图已知点A(1,a是反比例函数的图象上一点直线与反比例函数的图象的交点为点BDB(3,﹣1),

(1)求反比例函数的解析式

(2)求点D坐标并直接写出y1y2x的取值范围

(3)动点Px,0)x轴的正半轴上运动当线段PA与线段PB之差达到最大时求点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班“数学兴趣小组”对函数y+x的图象与性质进行了探究,探究过程如下,请补充完整.

(1)函数y+x的自变量x的取值范围是   

(2)下表是yx的几组对应值.

x

3

2

1

0

2

3

4

5

y

1

3

m

m的值;

(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;

(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(23),结合函数的图象,写出该函数的其它性质(一条即可)   

(5)小明发现,该函数的图象关于点(      )成中心对称;

该函数的图象与一条垂直于x轴的直线无交点,则这条直线为   

直线ym与该函数的图象无交点,则m的取值范围为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=ACAB>BC,点D在边BC上,CD=2BD,点EF在线段AD上,∠1=2=BAC,若ABC的面积为18,则ABECDF的面积之和是(

A.6B.8C.9D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:下列结论:甲乙两地相距600 千米;慢车的速度是60千米/小时;两车相距300千米时,x=2;④慢车走400千米时快车已到达甲地.其中正确的是___________________ .(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,点PBC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PDAC于点D,已知AB=a,设CD=y,BP=x,则yx函数关系的大致图象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,

(1)求DE的长;

(2)过点EF作EF⊥CE,交AB于点F,求BF的长;

(3)过点E作EG⊥CE,交CD于点G,求DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是反比例函数y=(x0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点AADx轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球

(1)请画树状图,列举所有可能出现的结果

(2)请直接写出事件取出至少一个红球的概率.

查看答案和解析>>

同步练习册答案