精英家教网 > 初中数学 > 题目详情
14.观察下列等式:
①$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}-1$;
②$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}-\sqrt{2}$;
③$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$;…
回答下列问题:
(1)化简:$\frac{1}{\sqrt{2015}+\sqrt{2014}}$=$\sqrt{2015}$-$\sqrt{2014}$;
(2)化简:$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}$-$\sqrt{n}$;(n为正整数);
(3)利用上面所揭示的规律计算:
$\frac{1}{1+\sqrt{2}}$$+\frac{1}{\sqrt{2}+\sqrt{3}}$$+\frac{1}{\sqrt{3}+\sqrt{4}}$+…+$\frac{1}{\sqrt{2013}+\sqrt{2014}}$+$\frac{1}{\sqrt{2014}+\sqrt{2015}}$.

分析 (1)根据已知得出式子变化规律写出答案即可;
(2)进而由(1)的规律得出答案;
(3)利用发现的规律化简各式进而求出即可.

解答 解:(1)$\frac{1}{\sqrt{2015}+\sqrt{2014}}$=$\sqrt{2015}$-$\sqrt{2014}$;
故答案为:$\sqrt{2015}$-$\sqrt{2014}$;

(2)$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}$-$\sqrt{n}$;(n为正整数);
故答案为:$\sqrt{n+1}$-$\sqrt{n}$;

(3)$\frac{1}{1+\sqrt{2}}$$+\frac{1}{\sqrt{2}+\sqrt{3}}$$+\frac{1}{\sqrt{3}+\sqrt{4}}$+…+$\frac{1}{\sqrt{2013}+\sqrt{2014}}$+$\frac{1}{\sqrt{2014}+\sqrt{2015}}$
=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+$\sqrt{4}$-$\sqrt{3}$+…+$\sqrt{2014}$-$\sqrt{2013}$+$\sqrt{2015}$-$\sqrt{2014}$
=$\sqrt{2015}$-1.

点评 此题主要考查了分母有理化,正确发现式子中变化规律是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,经过点C(0,-4)的抛物线y=ax2+bx+c(a≠0)与x轴相交于A(-2,0),B两点.
(1)a>0,b2-4ac>0(填“>”或“<”);
(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,AB为半圆O的直径,M为半圆内的一点,直线AM交半圆O于点C,直线BM交半圆O于点D,直线DC与直线AB交于点P,N为直径AB上的一点,且满足ON•OP=OB2,求证:MN⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.我市某游乐场在暑假期间推出学生个人门票优惠活动,各类门票价格如下表:
票价种类 (A)夜场票 (B)日通票(C)节假日通票
单价(元)80120150
某慈善单位欲购买三种类型的门票共100张奖励品学兼优的留守学生,设购买A种票x张,B种票张数是A种票的3倍还多7张,C种票y张,根据以上信息解答下列问题:
(1)直接写出x与y之间的函数关系式;
(2)设购票总费用为W元,求W(元)与x(张)之间的函数关系式;
(3)为方便学生游玩,计划购买学生的夜场票不低于20张,且节假日通票至少购买5张,有哪几种购票方案?哪种方案费用最少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知点P是线段AB的一个黄金分割点(AP>PB),则PB:AB的值为(  )
A.$\frac{3-\sqrt{5}}{2}$B.$\frac{\sqrt{5}-1}{2}$C.$\frac{1+\sqrt{5}}{2}$D.$\frac{3-\sqrt{5}}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若x-y=2,x-z=3,则(y-z)2-3(z-y)+9的值为(  )
A.13B.11C.5D.7

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.生物兴趣小组在同一温箱里培育甲、乙两种菌种,如果甲菌种生长温度x℃的范围是34≤x≤37,乙菌种生长温度y℃的范围是33≤y≤35.那么温箱里应设置温度T℃的范围是(  )
A.34≤T≤37B.34≤T≤35C.33≤T≤35D.35≤T≤37

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知x1、x2是关于x的方程x2-px+q=0的两根,且$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=3,x12+x22=7.求:p+q的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.云南地区地震发生后,全国人民抗旱救灾,众志成城.温州市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
车型
汽车运载量(吨/辆)5810
汽车运费(元/辆)400500600
(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(2)为了节省运费,温州市政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?

查看答案和解析>>

同步练习册答案