精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q两点,与x轴、y轴分别交于点M和N。
(1)设点P到x轴的距离为2,试求直线l的函数关系式;
(2)若线段MP与PN的长度之比为3:1,试求抛物线的函数关系式。
解:(1)∵抛物线的顶点是C(0,1),∴b=0,c=1,
如图1,

∵a>0,直线l过点N(0,3)
∴M点在x轴正半轴上
∵点P到x轴的距离为2,即点P的纵坐标为2。
把y=2代入得,
∴P点坐标为(,2)      
∵直线与抛物线交于点P
∴点P在上,
∴a=1
∴直线l的函数关系式为       
(2)如图2,若点P在y轴的右边,记为P1,过点P1作P1A⊥x轴于A,




,即
∵ON=3,,即点P1的纵坐标为
代入,得
∴点P1的坐标为()       
又∵点P1是直线l与抛物线的交点。∴点P1在抛物线上,
  

∴抛物线的函数关系式为    
如图2,若点P在y轴的左边,记为P2。作P2B⊥x轴于B



,即
∵ON=3,,即点P2的纵坐标为
由P2在直线l上可求得    
又∵P2在抛物线上,
∴抛物线的函数关系式为     
(1)由于抛物线的顶点为C(0,1),因此抛物线的解析式中b=0,c=1.即抛物线的解析式为y=ax2+1.已知了P到x轴的距离为2,即P点的纵坐标为2.可根据直线l的解析式求出P点的坐标,然后将P点坐标代入抛物线的解析式中即可求得a的值,也就能求出直线l的函数关系式.
(2)本题要根据相似三角形来求.已知了线段MP与PN的长度之比为3:1,如果过P作x轴的垂线,根据平行线分线段成比例定理即可得出P点的纵坐标的值.进而可仿照(1)的方法,先代入直线的解析式,然后再代入抛物线中即可求出a的值,也就求出了抛物线的解析式
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).

⑴求抛物线的解析式及顶点D的坐标;
⑵判断△ABC的形状,证明你的结论;
⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图已知二次函数图象的顶点坐标为,直线的图象与该二次函数的图象交于两点,其中点坐标为点在轴上,直线与轴的交点为为线段上的一个动点(点不重合),过轴的垂线与这个二次函数的图象交于点.
(1)求的值及这个二次函数的解析式;
(2)设线段的长为,点的横坐标为,求之间的函数关系式,并写出自变量的取值范围;
(3)为直线与这个二次函数图象对称轴的交点,在线段上是否存在点,使得以点为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上.

(1)求直线BC的解析式;
(2)求抛物线y=ax2+bx+c的解析式及点P的坐标;
(3)设M是y轴上的一个动点,求PM+CM的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点A(-2,-c)向右平移8个单位得到点,A与两点均在抛物线上,且这条抛物线与轴的交点的纵坐标为-6,求这条抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),有下列结论:①ac<0;②a+b=0;③4ac-b2>4a;④a+b+c<0.其中正确的结论有(   )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.

(1)求证:△APE∽△ADQ;
(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?
(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在梯形中,,点分别在线段上(点与点不重合),且,设

(1)求的函数表达式;
(2)当为何值时,有最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠O)的图象如图所示,现有下列结论:①abc>0 ②b2-4ac<0 ⑤c<4b ④a+b>0,则其中正确结论的个数是【   】
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案