精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠A=70°,ABC,ACB的平分线相交于点I,则∠BIC=_______________

【答案】125°

【解析】

根据三角形内角和定理求出∠ABC+ACB=180°-A=130°,根据角平分线定义得出∠IBC=ABC,ICB=ACB,求出∠IBC+ICB=65°,代入∠BIC=180°-(IBC+ICB)求出即可.

∵∠A=70°

∴∠ABC+ACB=180°-A=110°

∵∠ABC和∠ACB的角平分线交于I,

∴∠IBC=ABC,ICB=ACB,

∴∠IBC+ICB=×110°=55°,

∴∠BIC=180°-(IBC+ICB)=125°,

故答案为:125°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】网络购物越来越方便快捷,远方的朋友通过网购就可以迅速品尝到茂名的新鲜荔枝,同时也增加了种植户的收入,种植户老张去年将全部荔枝按批发价卖给水果商,收入6万元,今年的荔枝产量比去年增加2000千克,计划全部采用互联网销售,网上销售比去年的批发价高50%,若按此价格售完,今年的收入将达到10.8万元.
(1)去年的批发价和今年网上售价分别是多少?
(2)若今年老张按(1)中的网上售价销售,则每天的销量相同,20天恰好可将荔枝售完,经调查发现,当网上售价每上升0.1元/千克,每日销量将减少5千克,将网上售价定为多少,才能使日销量收入最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,则∠EBC等于(
A.22.5°
B.23°
C.25°
D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图平分,点分别是射线上的点(点不与点重合),联结,交射线与点

1)如果平分,试判断与射线的位置关系,试说明理由;

2)如果,垂足为点中有两个相等的角,请直接写出的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车从仓库O出发在东西街道上运送水果,规定向东为正方向,一次到达的5个销售地点依次分别为A,B,C,D,E,最后回到仓库O,货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣1,﹣2,+5.请问:

(1)请以仓库O为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;

(2)试求出该货车共行驶了多少千米?

(3)如果货车运送的水果以100千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:

+50,﹣15,+25,﹣10,﹣15,则该货车运送的水果总重量是多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程mx2﹣(m+2)x+2=0.
(1)证明:不论m为何值时,方程总有实数根;
(2)m为何整数时,方程有两个不相等的正整数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(3,﹣6)是二次函数y=ax2上的一点,则这二次函数的解析式是

【答案】y=﹣x2

【解析】

试题分析:将点A(3,﹣6)代入y=ax2,利用待定系数法法求该二次函数的解析式即可﹣6=9a

解得a=﹣因此该二次函数的解析式为:y=﹣x2

考点:待定系数法求二次函数解析式

型】填空
束】
15

【题目】在一个不透明的口袋中装有8个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在40%附近,则口袋中白球可能有________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(4,3).

(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y= (k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A从坐标原点出发,沿x轴的正方向运动,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.

(1)当点C与点E恰好重合时,求t的值;
(2)当t为何值时,BC取得最小值;
(3)设△BCE的面积为S,当S=6时,求t的值.

查看答案和解析>>

同步练习册答案