【题目】如图,在平面直角坐标系中,点A、B的坐标分别为(0,4)、(4,0),点C在第一象限内,∠BAC=90°,AB=2AC,函数y=(x>0)的图象经过点C,将△ABC沿x轴的正方向向右平移m个单位长度,使点A恰好落在函数y=(x>0)的图象上,则m的值为( )
A. B. C. 3 D.
【答案】C
【解析】
如图,过点C作CM⊥y轴于点M,易证△ABO∽△CAM,根据相似三角形的性质及已知条件求得OA、OB的长,即可求得点C的坐标,从而求得反比例函数的解析式,由平移后点A正好在反比例函数的图象上,可得点A的纵坐标,代入解析式即可求得点A 的横坐标,从而求得平移的距离.
如图,过点C作CM⊥y轴于点M,
∵A(0,4)、B(4,0),
∴OA=4,OB=4,
∵∠ABO+∠OAB=90°,∠OAB+∠CAM=90°,
∴∠ABO=∠CAM,
∵∠AOB=∠AMC,
∴△ABO∽△CAM,
∴,
∵AB=2AC,OA=4,OB=4,
∴OA=2,OB=2,
∴C(2,6),
∵C(2,6)在y=上,
∴k=4,
∴y=,
当y=4时,x=3,
∵将△ABC沿x轴正方向向右平移m个单位长度,使点A恰好落在双曲线上,
∴m=3,
故选C.
科目:初中数学 来源: 题型:
【题目】某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元
(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;
(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需费用较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列叙述中,正确的是
A.直角三角形中,两边的平方和等于第三边的平方
B.如果一个三角形中两边的平方差等于第三边的平方,那么这个三角形是直角三角形
C.在中,,, 的对边分别为 , , ,若 ,则
D.在 中, , , 的对边分别为 , , ,若 ,则
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间(月份)与市场售价(元/千克)的关系如下表:
上市时间(月份) | 1 | 2 | 3 | 4 | 5 | 6 |
市场售价(元/千克) | 10.5 | 9 | 7.5 | 6 | 4.5 | 3 |
这种蔬菜每千克的种植成本(元/千克)与上市时间(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).
(1)写出上表中表示的市场售价(元/千克)关于上市时间(月份)的函数关系式;
(2)若图中抛物线过点,写出抛物线对应的函数关系式;
(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场经营某种品牌的玩具,进价是元,根据市场调查:在一段时间内,销售单价是元时,销售量是件,而销售单价每涨元,就会少售出件玩具.
不妨设该种品牌玩具的销售单价为元,请你分别用的代数式来表示销售量件和销售该品牌玩具获得利润元,并把结果填写在表格中:
销售单价(元) | |
销售量(件) | ________ |
销售玩具获得利润(元) | ________ |
在问条件下,若商场获得了元销售利润,求该玩具销售单价应定为多少元.
在问条件下,若玩具厂规定该品牌玩具销售单价不低于元,且商场要完成不少于件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为( )
A. 5 B. 6 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC,分别交AB、AC于点D、E,那么下列结论:①△BDF和△CEF都是等腰三角形;②F为DE中点;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的有( )
A.①③B.①②③C.①②D.①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,AOBC的顶点A、C的坐标分别为A(﹣2,0)、C(0,3),反比例函数的图象经过点B.
(1)求反比例函数的表达式;
(2)这个反比例函数的图象与一个一次函数的图象交于点B、D(m,1),根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=kx+3和x轴、y轴的交点分别为B、C,∠OBC=30°,点A的坐标是(﹣,0),另一条直线经过点A、C.
(1)求点B的坐标及k的值;
(2)求证:AC⊥BC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com