精英家教网 > 初中数学 > 题目详情
(2013•丽水)如图,已知抛物线y=
12
x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.
(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.
分析:(1)将点A的坐标代入直线解析式求出a的值,继而将点A的坐标代入抛物线解析式可得出b的值,继而得出抛物线解析式;
(2)根据点A的坐标,求出点C的坐标,将点B的纵坐标代入求出点B的横坐标,继而可求出BC的长度;
(3)根据点D的坐标,可得出点E的坐标,点C的坐标,继而确定点B的坐标,将点B的坐标代入抛物线解析式可求出m,n之间的关系式.
解答:解:(1)∵点A(a,12)在直线y=2x上,
∴12=2a,
解得:a=6,
又∵点A是抛物线y=
1
2
x2+bx上的一点,
将点A(6,12)代入y=
1
2
x2+bx,可得b=-1,
∴抛物线解析式为y=
1
2
x2-x.

(2)∵点C是OA的中点,
∴点C的坐标为(3,6),
把y=6代入y=
1
2
x2-x,
解得:x1=1+
13
,x2=1-
13
(舍去),
故BC=1+
13
-3=
13
-2.

(3)∵点A的坐标为(6,12),
∴直线OA的解析式为:y=2x,
∵点D的坐标为(m,n),
∴点E的坐标为(
1
2
n,n),点C的坐标为(m,2m),
∴点B的坐标为(
1
2
n,2m),
把点B(
1
2
n,2m)代入y=
1
2
x2-x,可得m=
1
16
n2-
1
4
n,
∴m、n之间的关系式为m=
1
16
n2-
1
4
n.
点评:本题考查了二次函数的综合,涉及了矩形的性质、待定系数法求二次函数解析式的知识,解答本题需要同学们能理解矩形四个顶点的坐标之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•丽水)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是
15
15

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丽水)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丽水)如图,点P是反比例函数y=
k
x
(k<0)图象上的点,PA垂直x轴于点A(-1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=
5

(1)k的值是
-4
-4

(2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是
0<a<2或
-11-
33
2
<a<
-11+
33
2
0<a<2或
-11-
33
2
<a<
-11+
33
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丽水)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.
(1)求y与x之间的函数关系式;
(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丽水)如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t.
(1)当t=2时,求CF的长;
(2)①当t为何值时,点C落在线段BD上;
     ②设△BCE的面积为S,求S与t之间的函数关系式;
(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到△C′D′F′,再将A,B,C′,D′为顶点的四边形沿C′F′剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的点C′的坐标.

查看答案和解析>>

同步练习册答案