【题目】如图,中,,.点是射线上一动点,过点作射线的垂线,垂足为点,点为的中点,连结,则的最小值为________.
科目:初中数学 来源: 题型:
【题目】某工厂为了扩大生产,决定购买8台机器用于生产零件,现有甲、乙两种机器可供选择,其中甲型机器每日生产零件100个,乙型机器每日生产零件60个,经调查,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元.
(1)求甲、乙两种机器每台各多少万元?
(2)如果工厂买机器的预算资金不超过46万元,那么该工厂有哪几种购买方案?
(3)在(2)的条件下,如果要求该工厂购进的8台机器生产零件的日产量不低于550个,那么为了节约资金,应该选择哪种方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.
(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?
(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据新闻报道,作为宁波市政府民生实事之一的公共自行车建设工作已基本完成.某部门统计了今年4月份中的天的公共自行车日租车组情况,结果如图:
(1)求这天日租车量的众数、中位数和平均数;
(2)用(1)中的平均数估计4月份(天)共租车多少万车次?
(3)2017年市政府在公共自行车建设项目中共投入万元,计划2019年投入万元,若这两年公共自行车建设投资的年增长率相同,求年增长率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.
(1)求证:EB=GD且EB⊥GD;
(2)若AB=2,AG=,求的长;
(3)如图2,正方形AEFG绕点A逆时针旋转连结DE,BG,与的面积之差是否会发生变化?若不变,请求出与的面积之差;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BE是△ABC的高,AE=BE,若要运用“HL”说明△AEF≌△BEC,还需添加条件:_________;若要运用“SAS”说明△AEF≌△BEC,还需添加条件:___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x、y的二元一次方程组x-y=3a①和x+3y=4-a②.
(1)如果是方程①的解,求a的值;
(2)当a=1时,求两个方程的公共解;
(3)若方程组的解满足x≤0,求y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,2×2网格(每个小正方形的边长为1)中,有A,O,B,C,D,E,F,H,G九个格点.抛物线l的解析式为y=x2+bx+c.
(1)若l经过点O(0,0)和B(1,0),则b= ,c= ;它还经过的另一格点的坐标为 .
(2)若l经过点H(﹣1,1)和G(0,1),求它的解析式及顶点坐标;通过计算说明点D(1,2)是否在l上.
(3)若l经过这九个格点中的三个,直接写出所有满足这样的抛物线的条数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点、、不在同一条直线上,.
(1)如图1,当,时,求的度数;
(2)如图2,、分别为、的平分线所在直线,试探究与的数量关系;
(3)如图3,在(2)的前提下,有,,直接写出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com