【题目】目前节能灯在各城市已基本普及,今年某市面向县级及农村地区推广,为响应号召,朝阳灯饰商场用了元购进甲型和乙型两种节能灯.这两种型号节能灯的进价、售价如表:
进价(元/只) | 售价(元/只) | |
甲型 | ||
乙型 |
特别说明:毛利润=售价-进价;
(1)朝阳灯饰商场销售甲型节能灯一只毛利润是______元.
(2)如果朝阳灯饰商场购买甲,乙两种节能灯共只,其中买了甲型节能灯多少只?
(3)现在朝阳灯饰商场购进甲型节能灯只,请你帮助商场计算一下销售完节能灯时所获的毛利润是多少?
【答案】(1)5;(2) 买了甲型节能灯15只;(3)1080元.
【解析】
(1)根据题中公式列式计算即可.
(2)设买了甲型节能灯x只,则乙型节能灯100-x只,根据总消费4200列出方程解出即可.
(3)先算出乙型节能灯的数量,再将甲乙两节能灯的毛利润相加即可求出.
(1)朝阳灯饰上商场销售甲型节能灯一只毛利润是30-25=5元.
(2)设买了甲型节能灯x只,根据题意得:
25x+45(100-x)=4200,
解得x=15,
答:买了甲型节能灯15只.
(3)乙型节能灯的数量:(4200-96×25)÷45=40只.
所获毛利润:96×(30-25)+40×(60-45)=480+600=1080元.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为.
其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。如图的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.
(1)图1是显示部分代数式的“等和格”,可得a=_______(含b的代数式表示);
(2)图2是显示部分代数式的“等和格”,可得a=__________,b=__________;
(3)图3是显示部分代数式的“等和格”,求b的值。(写出具体求解过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数y=x2+bx+c(b,c都是常数)的图象经过点(1,0)和(0,2).
(1)当﹣2≤x≤2时,求y的取值范围.
(2)已知点P(m,n)在该函数的图象上,且m+n=1,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连结DE,过点E作EG⊥DE,使EG=DE,连结FG、FC
(1)请判断:FG与CE的数量关系是 ________,位置关系是________。
(2)如图2,若点E、F分别是边CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E、F分别是边BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“十一”黄金周期间,重庆仙女山风景区7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人数变化 单位:万人 | +1.2 | +0.4 | +0.8 | ﹣0.4 | ﹣0.8 | +0.2 | ﹣1.2 |
(1)若9月30日的游客人数记为a,请用含a的式子表示10月5日的游客人数: 万人.
(2)判断七天内游客人数最多的是 日,最少的是 日.
(3)以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数情况:人数变化(万人)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△ABC,AB=AC=24厘米,∠B=∠C,BC=16厘米,点D为AB的中点.点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为_____ 厘米/秒.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com