如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度,当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC、MC的长(用含t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形?
(3)是否存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形?
解:(1)由题意知,四边形ABNQ为矩形,∴BN=AQ=3-t ∴NC=BC-BN=4-(3-t)=1+t. 在Rt△ABC中, AC2=AB2+BC2=32+42=25,∴AC=5在Rt△MNC中,cos∠MCN=== ∴MC=(1+t) (2)∵QD∥PC,∴当QD=PC时,四边形PCDQ构成平行四边形 ∴t=4-t,∴t=2 ∴当t=2时,四边形PCDQ构成平行四边形. (3)若射线QN将△ABC的周长平分,则有 MC+NC=AM+BN+AB即(1+t)+1+t=(3+4+5) 解得t=.而MN=NC=(1+t) ∴S△MNC=NC·MN=(1+t)×(1+t)=(1+t)2 当t=时,S△MNC=(1+)2= 而S△ABC=××4×3=3,∴S△MNC≠S△ABC ∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分 (4)若△PMC为等腰三角形,则: ①当MP=MC时(如图),则有:NP=NC 即PC=2NC,∴4-t=2(1+t) 解得t=. 当CM=CP时(如图),则有:(1+t)=4-t 解得t=. ③当PM=PC时(如图),则有: 在Rt△MNP中, PM2=MN2+PN2 又MN=NC=(1+t)PN=NC-PC=(1+t)-(4-t)=2t-3 ∴[(1+t)] 2+(2t-3)2=(4-t)2解得t1=,t2=-1(不合题意,舍去)综上所述,当t=或t=或t=时,△PMC为等腰三角形. |
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
9
| ||
2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com