【题目】已知:数轴上点A、C对应的数分别为a、c,且满足|a+7|+(c﹣1)2020=0,点B对应的数为﹣3.
(1)请在如图所示的数轴上表示出点A、C对应的位置;
(2)若动点P、Q分别从A、B同时出发向右运动,点P的速度为3个单位长度秒;点Q的速度为1个单位长度秒,点Q运动到点C立刻原速返回,到达点B后停止运动;点P运动至点C处又以原速返回,到达点A后又折返向C运动,当点Q停止运动时点P随之停止运动.请在备用图中画出整个运动过程两动点P、Q同时到达数轴上某点的大致示意图,并求出该点在数轴上表示的数.
【答案】(1)点A表示的数为﹣7,C点表示的数为1;(2),整个运动过程两动点P、Q同时到达数轴上某点表示的数为﹣2或0或1.
【解析】
(1)利用非负数的性质求出a和c,然后在数轴上表示出来;
(2)设P、Q点运动的时间为t(s)时相遇,AB=4,CB=4,AC=8,当P点从A点向C点运动,Q点从B点向C点运动时,如图1,利用追击问题列方程3t-t=4;当P点从A点运动到C点,折返后再从C点向A点运动,Q点从B点向C点运动,如图2,利用相遇问题得到3t-8+t=4;当P点从A点到达C点折返,再从C点运动到A点,接着折返向C点运动,Q点从B点运动到C点时,折返后向B点运动,如图3,利用相遇问题得到3t-16+t-4=8,然后分别解方程求出t,从而得到相遇点表示的数.
解:(1)∵|a+7|+(c﹣1)2020=0,
∴a+7=0或c﹣1=0,
∴a=﹣7,c=1,
即点A表示的数为﹣7,C点表示的数为1;
如图,
(2)设P、Q点运动的时间为t(s)时相遇,AB=﹣3﹣(﹣7)=4,CB=1﹣(﹣3)=4,AC=8,
当P点从A点向C点运动,Q点从B点向C点运动时,如图1,
3t﹣t=4,解得t=2,
此时相遇点表示的数为﹣3+t=﹣3+2=﹣1;
当P点从A点运动到C点,折返后再从C点向A点运动,Q点从B点向C点运动,如图2,
3t﹣8+t=4,解得t=3,
此时相遇点表示的数为﹣3+3t=﹣3+3=0;
当P点从A点到达C点折返,再从C点运动到A点,接着折返向C点运动,Q点从B点运动到C点时,折返后向B点运动,如图3,
3t﹣16+t﹣4=8,解得t=7,
此时相遇点表示的数为﹣3+4﹣(t﹣4)=﹣2,
综上所述,整个运动过程两动点P、Q同时到达数轴上某点表示的数为﹣2或0或1.
科目:初中数学 来源: 题型:
【题目】如图,直线与反比例函数的图象交于、两点,与轴交于点,已知点的坐标为.
(1)求反比例函数的解析式;
(2)若点是反比例函数图象上一点,过点作轴于点,延长交直线于点,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【探索新知】:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.
(1)一个角的平分线 这个角的“巧分线”;(填“是”或“不是”)
(2)如图2,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ= ;(用含α的代数式表示出所有可能的结果)
【深入研究】:如图2,若∠MPN=60°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成180°时停止旋转,旋转的时间为t秒.
(3)当t为何值时,射线PM是∠QPN的“巧分线”;
(4)若射线PM同时绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN的“巧分线”时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知灯塔M方圆一定范围内有镭射辅助信号,一艘轮船在海上从南向北方向以一定的速度匀速航行,轮船在A处测得灯塔M在北偏东30°方向,行驶1小时后到达B处,此时刚好进入灯塔M的镭射信号区,测得灯塔M在北偏东45°方向,则轮船通过灯塔M的镭射信号区的时间为( )
A. (﹣1)小时 B. (+1)小时 C. 2小时 D. 小时
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上.正确的是__.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.
(1)王师傅单独整理这批实验器材需要多少分钟?
(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,AB=5,AC=3,则BC边上的中线AD的取值范围是( ).
A. 2<AD<8B. 0<AD<8C. 1<AD<4D. 3<AD<5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(14分)如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.
(1)求证:△CDE是等边三角形;
(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;
(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com