【题目】每年四月北京很多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰。据测定,杨絮纤维的直径约为0.000 010 5米,将0.000 010 5用科学记数法可表示为( )
A.1.05×105
B.1.05×10-5
C.0.105×10-4
D.10.5×10-6
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,AB=CD,点E、F在BC上,且BF=CE.
(1)求证:△ABE≌△DCF;
(2)试证明:以A、F、D、E为顶点的四边形是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=10厘米,BC=6厘米,点P沿AB边从点A开始向点B以3厘米/秒的速度移动;点Q沿DA边从点D开始向点A以2厘米/秒的速度移动.如果P、Q同时出发,用t (秒)表示移动的时间,那么:
(1)如图1,用含t的代数式表示AP= ,AQ= .并求出当t为何值时线段AP=AQ.
(2)如图2,在不考虑点P的情况下,连接QB,问:当t为何值时△QAB的面积等于长方形面积的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.则下列结论: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论__________(填编号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.
探究一:如图1,在△ABC中,已知O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+ ∠A,理由如下:
∵BO和CO分别是∠ABC与∠ACB的平分线,
∴∠1= ∠ABC,∠2= ∠ACB;
∴∠1+∠2= (∠ABC+∠ACB)= (180°﹣∠A)=90°﹣ ∠A,
∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣ ∠A)=90°+ ∠A.
(1)探究二:如图2中,已知O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?并说明理由.
(2)探究二:如图3中,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需( )
A.28mn 元 B.11mn元 C.(7m+4n)元 D.(4m+7n)元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com