精英家教网 > 初中数学 > 题目详情

如图,点E是边长为1的正方形ABCD的对角线BD上的一个动点(不与B、D两点重合),过点E作直线MN∥DC,交AD于M,交BC于N,连接AE,作EF⊥AE于E,交直线CB于F.
(1)如图1,当点F在线段CB上时,通过观察或测量,猜想△AEF的形状,并证明你的猜想;
(2)如图2,当点F在线段CB的延长线上时,其它条件不变,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由;
(3)在点E从点D向点B的运动过程中,四边形AFNM的面积是否会发生变化?若发生了变化,请说明理由;若没有发生变化,请求出其面积的值.

解:(1)∵四边形ABCD是正方形,BD是对角线,且MN∥AB,
∴四边形ABNM和四边形MNCD都是矩形,
△NEB和△MDE都是等腰直角三角形.
∴∠AEF=∠ENF=90°,MN=BC=AB,EN=BN
∴MN-EM=AD-MD,
即EN=AM,
又∵∠AEM+∠FEN=90°,∠AEM+∠EAM=90°
∴∠EAM=∠FEN,
∵∠AME=∠ENF=90°,
∴△AME≌△ENF(ASA);
∴AE=BE,
∵AE⊥EF,
∴△AEF是等腰直角三角形;

(2)由(1)同理可得:
∴BN=EN=AM,
∠AEM=∠EFN,
∵∠AME=∠ENF=90°
∴△AME≌△ENF(ASA);
∴AE=BE,
∵AE⊥EF,
∴△AEF是等腰直角三角形;


(3)四边形AFNM的面积没有发生变化
(i)当点E运动到BD的中点时,
四边形AFNM是矩形,S四边形AFNM=
(ii)当点E不在BD的中点时,点E在运动(与点B、D不重合)的过程中,四边形AFNM是直角梯形.
由(1)知,△AME≌△ENF,
同理,图(2),△AME≌△ENF,
∴FN=EM=DM.
∴FN+AM=DM+AM=AD=1
这时,S四边形AFNM=(FN+AM)•MN=
综合(i)、(ii)可知四边形AFNM的面积没有发生改变,都是
分析:(1)根据四边形ABCD是正方形,BD是对角线,且MN∥BA,求证△DEM和△BNE都是等腰直角三角形.又利用EF⊥AE,可得∠EFN=∠AEM,然后即可求证,△AME≌△ENF;
(2)利用(1)中证法求出BN=EN=AM,∠AEM=∠EFN,即可得出答案;
(3)分两种情况进行讨论:(i)当点E运动到BD的中点时,利用四边形AFNM是矩形,可得S四边形AFNM=
(ii)当点E不在BD的中点时,点E在运动(与点B、D不重合)的过程中,四边形AFNM是直角梯形.由(1)知,△AME≌△ENF,
同理,图(2)△AME≌△ENF,然后即可得出结论.
点评:此题主要考查正方形的性质,全等三角形的判定与性质等知识点的理解和掌握,利用图形进行分类讨论得出是解题关键,此题有一定的拔高难度,属于难题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别为AB,BC边上的中点,则MP+NP的最小值是(  )
A、2
B、1
C、
2
D、
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点P是边长为4的正方形ABCD的边AD上一点并且不与点A、D重合,MN是线段BP的精英家教网垂直平分线,与AB、BP、CD分别交于点M、O、N,设AP=x.
(1)求BM(结果用含有x的代数式表示);
(2)请你判断四边形MNCB的面积是否有最小值?若有最小值,求出使其面积取得最小值时的x的值并求出面积的最小值;若没有最小值,说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.点P是边长为1的正方形ABCD对角线AC上的一个动点(P不与A,C重合)且PE=PB 
(1)求证:PE⊥PD.
(2)设AP=x,四边形PECD的面积为y,求出y与x的关系式,并写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P是边长为1的菱形ABCD的对角线AC上一动点,点M、N分别是AB、BC中点,求MP+NP的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:点P是边长为1的正方形内(不在边上)任意一点,P和正方形各顶点相连后把正方形分成4块,其中①③可以重新拼成一个四边形,重拼后的四边形周长的最小值是
2
2
2
2

查看答案和解析>>

同步练习册答案