精英家教网 > 初中数学 > 题目详情
高致病性禽流感是比SARS病毒传染速度更快的传染病。
(1)某养殖场有8万只鸡,假设有1只鸡得了禽流感,如果不采取任何防治措施,那么,到第二天将新增病鸡10只,到第三天又将新增病鸡100只,以后每天新增病鸡数依次类推,请问:到第四天,共有多少只鸡得了禽流感病?到第几天,该养殖场所有鸡都会被感染?
(2)为防止禽流感蔓延,政府规定:离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有的禽类强制免疫;同时,对扑杀区和免疫区内的村庄、道路实行全封闭管理。现有一条笔直的公路AB通过禽流感病区,如图,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在该免疫区内有多少千米
(1)6;(2).

试题分析:(1)根据题目的叙述,第一天的数是1,第二天是11,第三天是111,因而第几天就是有几个1;
(2)过点O作OE⊥CD交CD于E,连接OC、OA,在Rt△OCE中,就可以求出OE,在Rt△OAE中求出AE,进而求出AC,进而求出.
试题解析:(1)由题意可知,到第4天得禽流感病鸡数为1+10+100+1000=1111,
到第5天得禽流感病鸡数为10000+1111=11111
到第6天得禽流感病鸡数为100000+11111=111111>80000
所以,到第6天所有鸡都会被感染;
(2)过点O作OE⊥CD交CD于E,连接OC、OA.

∵OA=5,OC=3,CD=4,∴CE=2。
在Rt△OCE中,AE=,∴AC=AE-CE=,∵AC=BD,
∴AC+BD=
答:这条公路在该免疫区内有()千米。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图AB是⊙O的直径,C是⊙O上的一点,若AC=8㎝,AB=10㎝,OD⊥BC于点D,求BD的长?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明和同桌小聪在课后做作业时,对课本中的一道作业题,进行了认真探索.
【作业题】如图1,一个半径为100m的圆形人工湖如图所示,弦AB是湖上的一座桥,测得圆周角∠C=45°,求桥AB的长.

小明和小聪经过交流,得到了如下的两种解决方法:
方法一:延长BO交⊙O与点E,连接AE,得 Rt△ABE,∠E=∠C,∴AB=
方法二:作AB的弦心距OH,连接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=
感悟:圆内接三角形的一边和这边的对锐角、圆的半径(或直径)这三者关系,可构成直角三角形,从而把一边和这边的对锐角﹑半径建立一个关系式.
(1)问题解决:受到(1)的启发,请你解下面命题:如图2,点A(3,0)、B(0,),C为直线AB上一点,过A、O、C的⊙E的半径为2.求线段OC的长.

(2)问题拓展:如图3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连结EF, 设⊙O半径为x, EF为y.①y关于x的函数关系式;②求线段EF长度的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知扇形的半径为30cm,圆心角为120度,求:
(1)扇形的面积.
(2)若用它卷成一个无底的圆锥形筒,求出这个圆锥形筒的高.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知两圆半径分别为方程的两根,圆心距为3,则两圆的位置关系是        .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知两圆相切且其中一圆半径为6cm,圆心距为9cm,则另一圆半径为     cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,三个小正方形的边长都为1,则图中阴影部分面积的和是       (结果保留π).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知圆锥的母线为10,底面圆的直径为12,则此圆锥的侧面积是(  )
A.24πB.30πC.48πD.60π

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙与⊙相切,⊙的半径为3cm,且=8,则⊙的半径为          

查看答案和解析>>

同步练习册答案