精英家教网 > 初中数学 > 题目详情

【题目】猜想与证明:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使BCG三点在一条直线上,CE在边CD上.连结AF,若MAF的中点,连结DMME,试猜想DMME的数量关系,并证明你的结论.

拓展与延伸:

(1)若将猜想与证明中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DMME的关系为__________________

(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]

【答案】猜想与证明:猜想DM与ME的数量关系是:DM=ME. 拓展与延伸:DM=ME,DM⊥ME

【解析】试题分析:猜想:延长EMAD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.

(1)延长EMAD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,

(2)连接AE,AEEC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,

试题解析:猜想:DM=ME

证明:如图1,延长EMAD于点H,

∵四边形ABCDCEFG是矩形,

∴AD∥EF,

∴∠EFM=∠HAM,

又∵∠FME=∠AMH,FM=AM,

在△FME和△AMH中,

∴△FME≌△AMH(ASA)

∴HM=EM,

RT△HDE中,HM=EM,

∴DM=HM=ME,

∴DM=ME.

(1)如图1,延长EMAD于点H,

∵四边形ABCDCEFG是正方形,

∴AD∥EF,

∴∠EFM=∠HAM,

又∵∠FME=∠AMH,FM=AM,

在△FME和△AMH中,

∴△FME≌△AMH(ASA)

∴HM=EM,

RT△HDE中,HM=EM,

∴DM=HM=ME,

∴DM=ME.

∵四边形ABCDCEFG是正方形,

∴AD=CD,CE=CF,

∵△FME≌△AMH,

∴EF=AH,

∴DH=DE,

∴△DEH是等腰直角三角形,

又∵MH=ME,

(2)如图2,连接AE,

∵四边形ABCDECGF是正方形,

∴∠FCE=45°,∠FCA=45°,

∴AEEC在同一条直线上,

Rt△ADF中,AM=MF,

∴DM=AM=MF,∠MDA=∠MAD,

∴∠DMF=2∠DAM.

Rt△AEF中,AM=MF,

∴AM=MF=ME,

∴DM=ME.

∵∠MDA=∠MAD,∠MAE=∠MEA,

∴∠DME=∠DMF+∠FME=∠MDA+∠MAD+∠MAE+∠MEA=2(∠DAM+∠MAE)=2∠DAC=2×45°=90°.

∴DM⊥ME.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AD是BC边上的中线,以D为顶点作∠EDF=90°,DE,DF分别交AB,AC于E,F,且BE2+CF2=EF2,求证:△ABC为直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点(﹣3,y3),(﹣2,y1),(﹣1,y2)在函数y=x2+1的图象上,则y1 , y2 , y3的大小关系是(
A.y1>y2>y3
B.y3>y1>y2
C.y3>y2>y1
D.y2>y1>y3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知多项式3x2+my﹣8与多项式﹣nx2+2y+7的和中,不含有x、y,求mn+mn的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2-2x+m=0有两个不相等的实数根.请你写出一个满足条件的m值:m=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习利用三角函数测高后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:

(1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角AFH=30°

(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角EGH=45°

(3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;

已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(取1.732,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,看旗杆顶部M的仰角为45°;小红的眼睛与地面的距离(45°)是1.5m,看旗杆顶部M的仰角为30°.两人相距23m且位于旗杆两侧(点B,N,D)在同一条直线上).请求出旗杆MN的高度.(参考数据:,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数图象经过A(3,0)、B(4,0)、C(0,4)三点.

(1)求该抛物线的解析式;

(2)求该抛物线的对称轴;

(3)该抛物线的对称轴上有一点D,在该抛物线上是否存在一点E,使得以D、E、B、C为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市篮球队在市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,如图记录的是这两名同学5次投篮中所投中的个数.

姓名

平均数(个)

众数(个)

方差

王亮

7

李刚

7

2.8

(1)请你根据图中的数据,填写上表.

(2)你认为谁的成绩比较稳定,为什么?

(3)若你是教练,你打算选谁?简要说明理由.

查看答案和解析>>

同步练习册答案