精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.
(1)求证:CE是⊙O的切线;
(2)若AE=1,CE=2,求⊙O的半径.

【答案】
(1)证明:连接CO,

∵OA=OC,

∴∠OCA=∠OAC,

∵AC平分∠FAB,

∴∠OCA=∠CAE,

∴OC//FD,

∵CE⊥DF,

∴OC⊥CE,

∴CE是⊙O的切线;


(2)证明:连接BC,

在Rt△ACE中,AC= = =

∵AB是⊙O的直径,

∴∠BCA=90°,

∴∠BCA=∠CEA,

∵∠CAE=∠CAB,

∴△ABC∽△ACE,

=

∴AB=5,

∴AO=2.5,即⊙O的半径为2.5.


【解析】(1)证明:连接CO,证得∠OCA=∠CAE,由平行线的判定得到OC//FD,再证得OC⊥CE,即可证得结论;(2)证明:连接BC,由圆周角定理得到∠BCA=90°,再证得△ABC∽△ACE,根据相似三角形的性质即可证得结论.
【考点精析】本题主要考查了角平分线的性质定理和切线的判定定理的相关知识点,需要掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;

(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;

(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?

请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是,连接PQ、AQ、设点P、Q运动的时间为ts.

t为何值时,四边形ABQP是矩形;

t为何值时,四边形AQCP是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A的坐标为(2,0),点D的坐标为(0,4),延长CBx轴于点A1,作第二个正方形A1B1C1C;延长C1B1x轴于点A2,作第三个正方形A2B2C2C1按这样的规律进行下去,第2018个正方形的面积为(  )

A. 20×(2017 B. 20×(2018 C. 20×(4036 D. 20×(4034

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在3×3的正方形网格中标出了∠1∠2,则∠1+∠2=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知线段AB=12cm,点C为线段AB上的一动点,点DE分别是ACBC中点.

1)若点C恰好是AB的中点,则DE=_______cm

2)若AC=4cm,求DE的长;

3)试说明无论AC取何值(不超过12cm),DE的长不变;

4)如图②,已知∠AOB=120°,过角的内部任一点C画射线OC.ODOE分别平分∠AOC和∠BOC.试说明∠DOE的度数与射线OC的位置无关.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求证:四边形ABCD是矩形.

(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可 以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰 三角形 ABC中,AB=AC,其一腰上的高为h,M 是底边BC上的任意一点M 到腰AB、AC 的距离分别为 h1、h2

(1)请你结合图形来证明: h1+h2=h;

(2)当点MBC延长线上时,h1、h2、h 之间又有什么样的结论.请你画出图形,并直

接写出结论不必证明;

(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=x+3,l2:y=-3x+3

若 l2上的一点M 到l1的距离是求点 M 的坐标.

查看答案和解析>>

同步练习册答案