精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求证:四边形ABCD是矩形.

(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?

【答案】(1)见解析;(2)18°.

【解析】试题分析:(1)先由对角线互相平分证明四边形ABCD是平行四边形,再由对角互补得出∠ABC=90°,即可得出结论;
(2)先求出∠FDC=36°,再求出∠DCO=54°,然后求出∠ODC=54°,即可求出∠BDF.

试题解析:

(1)证明:∵AO=CO,BO=DO

∴四边形ABCD是平行四边形,

∴∠ABC=∠ADC,

∵∠ABC+∠ADC=180°,

∴∠ABC=∠ADC=90°,

∴四边形ABCD是矩形;

(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,

∴∠FDC=36°,

∵DF⊥AC,

∴∠DCO=90°﹣36°=54°,

∵四边形ABCD是矩形,

∴OC=OD,

∴∠ODC=54°

∴∠BDF=∠ODC﹣∠FDC=18°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,tan∠ACD= ,AB=5,那么CD的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.
(1)求证:CE是⊙O的切线;
(2)若AE=1,CE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2= (x>0)交于点C,过点C作CD⊥x轴,且OA=AD,则以下结论: ①当x>0时,y1随x的增大而增大,y2随x的增大而减小;
②k=4;
③当0<x<2时,y1<y2
④如图,当x=4时,EF=4.
其中正确结论的个数是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.
(1)求证:CB是⊙O的切线;
(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平移线段AB,使点A移动到点A1

(1)画出平移后的线段A1B1,分别连接AA1,BB1

(2)分别画出AC⊥A1B1于点C,AD⊥BB1于点D.

(3)AA1与BB1之间的距离,就是线段   的长度.

(4)线段AB平移的距离,就是线段   的长度.

(5)线段BD的长度,是点B到直线   的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为(  )

A. S3<S1<S2 B. S1<S2<S3 C. S2<S1<S3 D. S1=S2=S3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,ODOB的反向延长线.若OC是∠AOD的平分线,则∠BOC=_____°,射线OC的方向是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.
(1)求证:四边形DEFG是平行四边形;
(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.

查看答案和解析>>

同步练习册答案