分析 过D作DG∥BC交AB于G,则DG为△ABC的中位线,根据等边三角形的性质得∠ACB=∠ABC=60°,由DG∥BC,得∠FGD=120°,∠GDC=120°,△AGD为等边三角形,而∠EDF=120°,得∠GDF=∠CDE,易证得△GDF∽△CDE,所以FG:CE=DG:DC,即CE:DC=FG:DG=FG:AG,当AF=2BF,设BF=x,AF=2x,则AB=3x,AG=1.5x,FG=1.5x-x=0.5x,即可得到CE:DC的比值.
解答 解:过D作DG∥BC交AB于G,如图1,![]()
∵D是AC的中点,
∴DG为△ABC的中位线,
∵△ABC是等边三角形,
∴∠ACB=∠ABC=60°,
∴∠DCE=120°,
又∵DG∥BC,
∴∠FGD=120°,∠GDC=120°,△AGD为等边三角形,
而∠EDF=120°,
∴∠GDF=∠CDE,
∴△GDF∽△CDE,
∴FG:CE=DG:DC,即CE:DC=FG:DG,
而DG=AG=BG,AF=2BF,
设BF=x,AF=2x,则AB=3x,AG=1.5x,FG=1.5x-x=0.5x,
∴CE:DC=FG:DG=FG:AG=1.5x:0.5x=1:3.
故答案为:$\frac{1}{3}$.
点评 本题考查了等边三角形的性质:等边三角形三边相等;三个角都等于60°;也考查了相似三角形的判定与性质以及含30度的直角三角形三边的关系.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (1)(2)(3) | B. | (2)(3)(4) | C. | (2)(4) | D. | (1)(3) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com