【题目】如图,正方形ECFD各顶点在Rt△ABC的边上,观察图形,并回答下列问题:
(1)请你说明由图(1)变换到图(2)的过程;
(2)若AD=3,△AED与△BDF的面积和为9,求线段BD的长.
【答案】(1)△ADE绕点D逆时针旋转90°得到△A'DF;(2)BD=6
【解析】
观察图形,发现DA旋转到,DE旋转到DF,而,由旋转的定义即可描述由图变成图的形成过程;
根据旋转的性质可得:和的面积和=的面积,即可得到,即可得到.
解:(1)∵四边形DECF为正方形,
∴∠EDF=90°,DE=DF,
∴DA绕点D逆时针旋转90度到的位置,DE绕点D逆时针旋转90度到DF位置,
∴△ADE绕点D逆时针旋转90°得到△A'DF;
(2)∵四边形ECFD是正方形,
∴∠CED=∠EDF=∠DFC=90°,
∴∠AED=∠DFB=90°,∠ADE+∠FDB=90°,
由(1)可知,△ADE≌△A'DF,
∴∠ADE=∠A'DF,∠AED=∠A'FD=90°,A'D=AD=3,
∴∠DFB+∠A'FD=180°,∠A'DF+∠FDB=90°,
∴A',F,B三点共线,
∴△AED和△BDF的面积和=的面积,
∴A'D×BD=9,
又∵A'D=3,
∴BD=6.
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+bx+c的对称轴为直线x=﹣,与x轴交于点A和点B(1,0),与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F.
(1)求抛物线的解析式;
(2)点P是直线BE上方抛物线上一动点,连接PD、PF,当△PDF的面积最大时,在线段BE上找一点G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.
(3)如图2,点M为抛物线上一点,点N在抛物线的对称轴上,点K为平面内一点,当以A、M、N、K为顶点的四边形是正方形时,请求出点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的顶点在轴上.
(1)若点是抛物线最低点,且落在轴正半轴上,直接写出的取值范围;
(2),是抛物线上两点,若,则;若,则,且当的绝对值为4时,为等腰直角三角形(其中).
①求抛物线的解析式;
②设中点为,若,求点纵坐标的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为,并把实验数据绘制成下列两幅统计图(部分信息未给出):
(1) 求实验中“宁港”品种鱼苗的数量;
(2) 求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;
(3)你认为应选哪一品种进行推广?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.
(1)用画树状图法或列表法分析这两辆汽车行驶方向所有可能的结果;
(2)求一辆车向右转,一辆车向左转的概率;
(3)求至少有一辆车直行的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为弓形AB的弦,AB=2,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)直线l1:y=x+1与x轴交于点A,直线l2:y=﹣x+3与x轴交于点B,l1与l2交于点C,直线l3过线段AB的中点和点C,求直线l3的解析式;
(2)已知平面直角坐标系中,直线l经过点P(2,1)且与双曲线y=交于A、B不同两点,问是否存在这样的直线l,使得点P恰好为线段AB的中点,若存在,求出直线l的解析式,若不存在,请说明理由;
(3)若A(x1,y1)、B(x2,y2)是抛物线y=4x2上的不同两点(y1≠y2),线段AB的垂直平分线与y轴交于点P,与线段AB交于点M(xm,ym),则称线段AB为点P的一条“相关弦”,若点P的坐标为(0,a)时(a为常数),证明点P的“相关弦”中点M的纵坐标相同.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为 ;
(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“ ”;
(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com