精英家教网 > 初中数学 > 题目详情
下面给出的三块正方形纸板的边长都是60cm,请分别按下列要求设计一种剪裁方法,折叠成一个礼品包装盒(纸板的厚度忽略不计).要求尽可能多地利用纸板,用虚线表示你的设计方案,并把剪裁线用实线标出.
(1)包装礼盒的六个面由六个矩形组成(如图1),请画出对应的设计图.

(2)包装礼盒的上盖由四个全等的等腰直角三角形组成(如图2),请画出对应的设计图.

(3)包装礼盒的上盖是双层的,由四个全等的矩形组成(如图3),请画出对应的设计图.
考点:作图—应用与设计作图
专题:
分析:根据矩形的性质、等腰直角三角形的性质以及题目的要求作图即可.
解答:解:如图所示:

(注:答案不唯一,不必考虑取最大值,只要不出现在中间扣一个图形即可,其他答案请相应给分)
点评:本题考查了应用与设计作图,磁力题目主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧
AD
上取一点E使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H.
(1)求∠AGB的度数;
(2)若∠ABC=45°,⊙O的直径等于17,BD=15,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,⊙O1的半径为6,⊙O2的半径为8,且⊙O1与⊙O2相切,则这两圆的圆心距为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

下列各数中,最大的数是(  )
A、-1
B、2
C、0
D、
3

查看答案和解析>>

科目:初中数学 来源: 题型:

在一次数学活动课上,两个同学利用计算机软件探索函数问题,下面是他们交流片断:
图1:小韩:若直线x=m(m>0)分别交x轴,直线y=x和y=2x于点P、M、N时,有
MN
PM
=1.
图2:小苏:若直线x=m(m>0)分别交x轴,直线y=
2
x
(x>0)和y=
3
x
(x>0)于点P、M、N时,有
MN
PM
=…
问题解决

(1)填空:图2中,小苏发现的
MN
PM
=
 

(2)若记图1,图2中MN为d1,d2,分别求出d1,d2与m之间的函数关系式.并指出函数的增减性;
(3)如图3,直线x=m(m>0)分别交x轴,抛物线y=x2-4x和y=x2-3x于点P,M,N,设A,B为抛物线y=x2-4x,y=x2-3x与x轴的非原点交点.当m为何值时,线段OP,PM,PN,MN中有三条能围成等边三角形?并直接写出此时点A,B,M,N围成的图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

某校积极开展卫生健康知识宣传教育,认真组织学生参加健康教育知识竞赛活动.已知竞赛成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.现有甲、乙两班学生人数相同,竞赛成绩整理并绘制成如下统计图.

(1)此次竞赛中乙班成绩在C级以上(包括C级)的人数为
 

(2)请将下面表格补充完整:
平均数(分) 中位数(分) 众数(分)
甲班
 
90 90
乙班 88
 
100
(3)试运用所学的统计知识,从两个不同角度评价甲班和乙班的成绩.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,A点坐标为(-2,2).
(1)如图(1),在△ABO为等腰直角三角形,求B点坐标.
(2)如图(1),在(1)的条件下,分别以AB和OB为边作等边△ABC和等边△OBD,连结OC,求∠COB的度数.
(3)如图(2),过点A作AM⊥y轴于点M,点E为x轴正半轴上一点,K为ME延长线上一点,以MK为直角边作等腰直角三角形MKJ,∠MKJ=90°,过点A作AN⊥x轴交MJ于点N,连结EN.则①
AN+OE
NE
的值不变;②
AN-OE
NE
的值不变,其中有且只有一个结论正确,请判断出正确的结论,并加以证明和求出其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)求△AOB的面积;
(3)若点P(m,-m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q的坐标.
(注:抛物线y=ax2+bx+c的对称轴是x=-
b
2a

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在直线l同侧有A,E两点
(1)通过画图,在直线l上找到一点P,使得AP+EP的值最小;
(2)如图2,分别过点A,E作AB⊥BD,ED⊥BD,C为线段BD上一动点,连接AC,EC.已知AB=9,DE=1,AE=17,设CD=x,用含x的代数式表示AC+CE的长;
(3)应用A:如图3,若直线l是一条河流,A、E代表河流同侧的两个工厂,欲在河岸上建一供水站,供A、E两个工厂的用水,为了节省费用,使通水管道到两个工厂的距离之和最短;已知工厂A到河岸的距离为9千米,工厂E到河岸的距离为1千米,A、E两个工厂之间的距离为17千米,请你求出通水管道的最短长度;
(4)应用B:借助上面的思考过程与几何模型,求代数式
x2+9
+
(16-x)2+81
的最小值(0<x<16)

查看答案和解析>>

同步练习册答案