分析 设一次函数的表达式为Q=kt+b(k≠0),然后利用待定系数法求一次函数解析式,把余油量代入函数解析式求出时间t即可.
解答 解:设一次函数的表达式为Q=kt+b(k≠0)
由图象可知,函数图象过(0,60)和(4,40)两点,
∴$\left\{\begin{array}{l}{b=60}\\{4k+b=40}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-5}\\{b=60}\end{array}\right.$,
∴Q=-5t+60;
当Q=20时,-5t+60=20,
解得t=8,
∴当油箱中余油20升时,该汽车行驶了8小时.
故答案为8.
点评 此题考查了一次函数的应用,已知函数值求自变量的方法,利用待定系数法求出一次函数解析式是解题的关键,也是本题的难点
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$ | B. | $\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$ | C. | 2 $\sqrt{2}$+3$\sqrt{2}$=5$\sqrt{2}$ | D. | $\sqrt{(\sqrt{2}-\sqrt{3})^{2}}$=$\sqrt{2}-\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com