【题目】如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)(正方形网格中,每个小正方形的边长为1)
(1)画出△ABC向下平移5个单位得到的△A1B1C1,并写出点B1的坐标;
(2)以点O为位似中心,在第三象限画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,直接写出点C2的坐标和△A2B2C2的面积.
![]()
科目:初中数学 来源: 题型:
【题目】如图,过点A(5,
)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.
![]()
(1)求a、b的值;
(2)当△BCD是直角三角形时,求△OBC的面积;
(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,连结EB交OD于点F.
![]()
(1)求证:OD⊥BE;
(2)若DE=
,AB=
,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标平面内,直线
分别与
轴、
轴交于点
,
.抛物线
经过点
与点
,且与
轴的另一个交点为
.点
在该抛物线上,且位于直线
的上方.
![]()
(1)求上述抛物线的表达式;
(2)联结
,
,且
交
于点
,如果
的面积与
的面积之比为
,求
的余切值;
(3)过点
作
,垂足为点
,联结
.若
与
相似,求点
的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与
轴交于
两点,与
轴交于点
.
![]()
(1)求此抛物线的表达式及顶点的坐标;
(2)若点
是
轴上方抛物线上的一个动点(与点
不重合),过点
作
轴于点
,交直线
于点
,连结
.设点
的横坐标为
.
①试用含
的代数式表示
的长;
②直线
能否把
分成面积之比为1:2的两部分?若能,请求出点
的坐标;若不能,请说明理由.
(3)如图2,若点
也在此抛物线上,问在
轴上是否存在点
,使
?若存在,请直接写出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数
的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=
∠AOB.要明白帕普斯的方法,请研究以下问题:
(1)设P(
,
)、R(
,
),求直线OM对应的函数表达式(用含
,
的代数式表示);
(2)分别过点P和R作y轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=
∠AOB;
(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为2的正方形ABCD,点P从点A出发以每秒1个单位长度的速度沿A﹣D﹣C的路径向点C运动,同时点Q从点B出发以每秒2个单位长度的速度沿B﹣C﹣D﹣A的路径向点A运动,当Q到达终点时,P停止移动,设△PQC的面积为S,运动时间为t秒,则能大致反映S与t的函数关系的图象是( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、
B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横
坐标为t.
(1)分别求出直线AB和这条抛物线的解析式.
(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.
(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com