精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点P是△ABC的重心,过PAB的平行线DE,分别交AC于点D,BC于点E,DF//BC,AB于点F,若四边形BEDF的面积为4,则△ABC的面积为__________

【答案】9

【解析】

连接CPAB于点H,利用点P是重心得到=,得出SDEC=4SAFD,再由DE//BF证出,由此得到SDEC=SABC,继而得出S四边形BEDF=SABC,从而求出△ABC的面积.

如图,连接CPAB于点H,

∵点PABC的重心,

,

,

DF//BE,

∴△AFD∽△DEC,

SDEC=4SAFD,

DE//BF,

,DEC∽△ABC,

SABC=SDEC,

∴S四边形BEDF=S△ABC,

∵四边形BEDF的面积为4,

∴S△ABC=9

故答案为:9.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB3BC4,点EAB边上一点,且AE2,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AGCG,则四边形AGCD的面积的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AC平分DAB,ADC=ACB=90°,E为AB的中点,

(1)求证:AC2=ABAD;

(2)求证:CEAD;

(3)若AD=4,AB=6,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AC平分∠DAB,ADC=ACB=90°,EAB的中点,

(1)求证:AC2=ABAD;

(2)求证:△AFD∽△CFE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20191126日,鲁南高铁正式开通运营.鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向挖隧道,为了加快施工速度,要在小山的另一侧DACD共线)处同时施工.测得∠CAB30°,,∠ABD105°,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点B的坐标是(-20),点C的坐标是(80),以线段BC为直径作⊙A,交y轴的正半轴于点D,过BCD三点作抛物线.

1)求抛物线的解析式;

2)连结BDCD,点EBD延长线上一点,∠CDE的角平分线DF交⊙A于点F,连结CF,在直线BE上找一点P,使得△PFC的周长最小,并求出此时点P的坐标;

3)在(2)的条件下,抛物线上是否存在点G,使得∠GFC=DCF,若存在,请直接写出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣2x2+bx+c的图象经过点(06)和(18).

1)求这个二次函数的解析式;

2)①当x在什么范围内时,yx的增大而增大?

②当x在什么范围内时,y0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCAD=2BC, EAD的中点,连接BD,BE,∠ABD=90°

1)求证:四边形BCDE为菱形.

2)连接AC,ACBE, BC=2,BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是⊙O的直径.弦AC垂直平分OD,垂足为E

1)求∠DAC的度数;

2)若AC6,求BE的长.

查看答案和解析>>

同步练习册答案