精英家教网 > 初中数学 > 题目详情

【题目】阅读下面材料:点AB在数轴上分别表示有理数abAB两点之间的距离表示为AB,在数轴上AB两点之间的距离AB|ab|.回答下列问题:

1)数轴上表示﹣31两点之间的距离是   ,数轴上表示﹣23的两点之间的距离是   

2)数轴上表示x和﹣1的两点之间的距离表示为   

3)若x表示一个有理数,则|x2|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.

【答案】145;(2|x+1|;(35.

【解析】

1)根据在数轴上AB两点之间的距离为AB|ab|即可求解;

2)根据在数轴上AB两点之间的距离为AB|ab|即可求解;

3)根据绝对值的性质去掉绝对值号,然后计算即可得解.

1|1﹣(﹣3|4|3﹣(﹣2|5

故答案为:45

2|x﹣(﹣1||x+1||(﹣1)﹣x||x+1|

故答案为:|x+1|

3)有最小值,

x<﹣3时,|x2|+|x+3|2xx3=﹣2x1

当﹣3≤x≤2时,|x2|+|x+3|2x+x+35

x2时,|x2|+|x+3|x2+x+32x+1

在数轴上|x2|+|x+3|的几何意义是:表示有理数x的点到﹣3及到2的距离之和,所以当﹣3≤x≤2时,它的最小值为5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.

(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?

(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么丽商场至少需购进多少件A种商品?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.

(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;

(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在平面直角坐标系中,是函数的图像上一点,y轴上一动点,四边形ABPQ是正方形(点ABPQ按顺时针方向排列)。

1)求a的值;

2)如图②,当时,求点P的坐标;

3)若点P也在函数的图像上,求b的值;

4)设正方形ABPQ的中心为M,点N是函数的图像上一点,判断以点PQMN为顶点的四边形能否是正方形,如果能,请直接写出b的值,如果不能,请说明理由。

图① 图② 备用图

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程m为常数)

1)求证:不论m为何值,该方程总有实数根;

2)若该方程有一个根是,求m的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题情景】利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.

例如:张老师给小聪提出这样一个问题:

如图1,在ABC中,AB=3,AD=6,问ABC的高ADCE的比是多少?

小聪的计算思路是:

根据题意得:SABC=BCAD=ABCE.

从而得2AD=CE,

请运用上述材料中所积累的经验和方法解决下列问题:

(1)【类比探究】

如图2,在ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,

求证:BO平分角AOC.

(2)【探究延伸】

如图3,已知直线mn,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PAPB=2AB.

(3)【迁移应用】

如图4,EAB边上一点,EDAD,CECB,垂足分别为D,C,DAB=B,AB=,BC=2,AC=,又已知M、N分别为AE、BE的中点,连接DM、CN.求DEMCEN的周长之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一个正方形ABCD,P是边BC上一点.绕点A逆时针方向旋转90°得到(点B,P的对应点分别是

1)画出旋转后所得到的

2)联结,设,试用表示的面积;

3)若的面积为18的面积为5,试求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在AOB中,∠ABO=90°OB=4AB=8,直线y=-x+b分别交OAAB于点CD,且ΔBOD的面积是4.

(1)求直线AO的解析式;

(2)求直线CD的解析式;

(3)若点Mx轴上的点,且使得点M到点A和点C的距离之和最小,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,EBD中点,延长CD到点F,使

求证:

求证:四边形ABDF为平行四边形

,求四边形ABDF的面积

查看答案和解析>>

同步练习册答案