【题目】若一个三角形一条边的平方等于另两条边的乘积,我们称这个三角形是比例三角形.
(1)已知△ABC是比例三角形,AB=1,BC=2,求AC的长.
(2)如图1,在四边形ABCD中,AB=AD,对角线BD平分∠ABC,∠BAC=∠ADC
①求证:△ABC是比例三角形
②若AB∥DC,如图2,求的值.
【答案】(1)AC=;(2)①详见解析;②.
【解析】
(1)根据比例三角形的定义,分AB2=BCAC、BC2=ABAC、AC2=ABBC三种情况分别代入计算可得;
(2)①先证△ADC∽△CAB,得ADBC=AC2,再由∠ABD=∠CBD,∠ADB=∠DBC,推出AB=AD即可得;②首先证明四边形ABCD是菱形,根据∠BAC=∠ADC可得△ABC是等边三角形,然后根据含30° 直角三角形的性质可得答案.
解:(1)设AC=m.
由题意m2=1×2或12=2m或22=m,
∴m=,m=(不符合三角形三边关系定理,舍去),m=4(不符合三角形三边关系定理,舍去),
故AC=;
(2)①∵AB=AD,
∴∠ABD=∠ADB,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠DBC,
∴AD∥BC,
∴∠ACB=∠DAC,
∵∠BAC=∠ADC,
∴△ADC∽△CAB,
∴,
∴ADBC=AC2,
∵∠ABD=∠CBD,∠ADB=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD,
∴ABBC=AC2,
∴△ABC是比例三角形;
②由①知AD∥BC,
∵AB∥CD,
∴四边形ABCD是平行四边形,
∵AB=AD,
∴四边形ABCD是菱形,
∵∠BAC=∠ADC,且∠BAC=∠BCA,
∴∠ADC=∠BCA,
∴∠ABC=∠BCA=∠BAC,
∴△ABC是等边三角形,
∴BO=AO,DO=OC,
∴BO+DO=(OA+OC),
∴BD=AC,
∴=.
科目:初中数学 来源: 题型:
【题目】如图1,Rt△ABC中,∠ACB=90°,点D为AB边上的动点(点D不与点A,点B重合),过点D作ED⊥CD交直线AC于点E,已知∠A=30°,AB=4cm,在点D由点A到点B运动的过程中,设AD=xcm,AE=ycm.
(1)通过取点、画图、测量,得到了x与y的几组值,如表:
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(说明:补全表格时相关数值,保留一位小数)
(2)在如图2的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当AE=AD时,AD的长度约为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形ABCD的两条边AB=1,AD=,以B为旋转中心,将对角线BD顺时针旋转60°得到线段BE,再以C为圆心将线段CD顺时针旋转90°得到线段CF,连接EF,则图中阴影部分面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A、B、C三点分别为A(﹣4,0)、B(﹣4,﹣4)、C(0,4),点P在x轴上,点D在直线AB上,若DA=1,CP⊥DP,垂足为P,则点P的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.
(1)求证:AB=AF;
(2)当AB=3,BC=4时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,∠C=90°,AD是∠BAC的角平分线.
(1)请尺规作图:作⊙O,使圆心O在AB上,且AD为⊙O的一条弦.(不写作法,保留作图痕迹);
(2)判断直线BC与所作⊙O的位置关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com