精英家教网 > 初中数学 > 题目详情

【题目】如图1RtABC中,∠ACB90°,点DAB边上的动点(点D不与点A,点B重合),过点DEDCD交直线AC于点E,已知∠A30°AB4cm,在点D由点A到点B运动的过程中,设ADxcmAEycm

1)通过取点、画图、测量,得到了xy的几组值,如表:

小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(说明:补全表格时相关数值,保留一位小数)

2)在如图2的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;

3)结合画出的函数图象,解决问题:当AEAD时,AD的长度约为  cm

【答案】11.2;(2)见解析;(32.43.3

【解析】

(1)(2)根据题意测量、作图即可;(3)满足AE=AD条件,实际上可以转化为正比例函数

解:(1)根据题意,测量得1.2

∴故答案为:1.2

(2)根据已知数据,作图得:

(3)当时,,在(2)中图象作图,并测量两个函数图象交点得:

AD=2.4或3.3

故答案为:2.4或3.3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2+bx+ca≠0)图象与x轴交于AB两点,与y轴交于C点,且对称轴为x1,点B坐标为(﹣10).则下面的四个结论:①2a+b0;②4a2b+c0;③b24ac0;④当y0时,x<﹣1x2.其中正确的有(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形中,点上任意一点,过点于点,连接并延长交的延长线于点,则下列结论中错误的是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的表达式为y=ax2+4ax+4a-1a≠0),它的图像的顶点为A,与x轴负半轴相交于点B、点C(点B在点C左侧),与y轴交于点D,连接AO交抛物线于点E,且SAEC:SCEO=1:3.

1)求点A的坐标和抛物线表达式;

2)在抛物线的对称轴上是否存在一点P,使得BDP的内心也在对称轴上,若存在,求点P的坐标;若不存在,请说明理由;

3)连接BD,点Qy轴左侧抛物线上的一点,若以Q为圆心,为半径的圆与直线BD相切,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴于两点,与轴交于点,连接.点是第一象限内抛物线上的一个动点,点的横坐标为

(1)求此抛物线的表达式;

(2)过点轴,垂足为点于点.试探究点P在运动过程中,是否存在这样的点,使得以为顶点的三角形是等腰三角形.若存在,请求出此时点的坐标,若不存在,请说明理由;

(3)过点,垂足为点.请用含的代数式表示线段的长,并求出当为何值时有最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将矩形OABC置于平面直角坐标系中,点A,C分别在x,y轴的正半轴上,已知点B(4,2),将矩形OABC翻折,使得点C的对应点P恰好落在线段OA(包括端点O,A)上,折痕所在直线分别交BCOA于点D、E;若点P在线段OA上运动时,过点POA的垂线交折痕所在直线于点Q.设点Q的坐标为(x,y),则y关于x的函数关系式是_______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线yx23x+cy轴的交点为(02),则下列说法正确的是(  )

A. 抛物线开口向下

B. 抛物线与x轴的交点为(﹣10),(30

C. x1时,y有最大值为0

D. 抛物线的对称轴是直线x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AB4AD6,∠ABC60°,∠BAD与∠ABC的平分线AEBF交于点P,连接PD,则tanADP的值为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个三角形一条边的平方等于另两条边的乘积,我们称这个三角形是比例三角形.

1)已知△ABC是比例三角形,AB1BC2,求AC的长.

2)如图1,在四边形ABCD中,ABAD,对角线BD平分∠ABC,∠BAC=∠ADC

求证:△ABC是比例三角形

ABDC,如图2,求的值.

查看答案和解析>>

同步练习册答案