精英家教网 > 初中数学 > 题目详情

【题目】为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:

(1)分别求出通话费y1 , y2与通话时间x之间的函数关系式;
(2)请帮用户计算,在一个月内使用哪一种卡便宜.

【答案】
(1)解:设y1=kx+b,将(0,29),(30,35)代入,

解得k= ,b=29,∴

又24×60×30=43200(min)

(0≤x≤43200),

同样求得


(2)解:当y1=y2时,

当y1<y2时,

所以,当通话时间等于96 min时,两种卡的收费相等,

当通话时间小于 mim时,“如意卡便宜”,

当通话时间大于 min时,“便民卡”便宜


【解析】(1)设y1=kx+b,将(0,29),(30,35)代入,得出方程组求解就可以求出通话费y1与通话时间x之间的函数关系式;同理求出通话费y2与通话时间x之间的函数关系式;(2)分三种情况讨论当y1=y2时得方程组求解即可,当y1<y2时的不等式组求解即可,当y1y2时得不等式组求解即可;最后写出结论。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.

(1)说明:AP是⊙O的切线;
(2)若OC=CP,AB=6,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E是对角线BD上的一点,过点CCFDB,且CF=DE,连接AEBFEF

1)求证:△ADE≌△BCF

2)若∠ABE+BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民居民一户一表生活用水阶梯式计费价格表的部分信息:

(说明:每户产生的污水量等于该户自来水用水量;水费=自来水费用+污水处理费)

已知小王家20124月用水20吨,交水费66元,5月份用水25吨,交水费91元.

1)求ab的值;

2)随着夏天的到来,用水量将增加.为了节省开支.小王计划把6月份的水费控制在不超过家庭月收入的2%,若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年的日为世界环保日,为了提倡低碳环保,某公司决定购买台节省能源的新设备,现有甲乙两种型号的设备可供选购,经调查:购买台甲型设备比购买台乙型设备多花万元,购买台甲型设备比购买台乙型设备少花万元.

1)求甲乙两种型号设备的价格;

2)该公司决定购买甲型设备不少于台,预算购买节省能源的新设备的资金不超过万元,你认为该公司有那几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100)作为样本进行整理,得到下列不完整的统计图表:

成绩x/

频数

频率

50x60

10

0.05

 60x70

30

0.15

 70x80

40

n

 80x90

m

0.35

 90x100

50

0.25

请根据所给信息,解答下列问题:

(1)m   n   

(2)请补全频数分布直方图;

(3)若成绩在90分以上(包括90)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,每个小正方形的边长为一个单位长度已知ABC的顶点A(-2,5)、B(-4,1)、C(2,3),将ABC平移得到ABC,点A(ab)对应点A′(a+3,b-4)

(1) 画出ABC并写出点B′、C的坐标

(2) 试求线段AB在整个平移的过程中在坐标平面上扫过的面积

(3) x轴上存在一点P,使得SABP=6,则点P的坐标是_____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在直角坐标系第一象限内,轴重合, ,点从点出发,以每秒个单位向点运动,点同时从点出发以每秒3个单位向点运动,当其中有一点到达终点时,另一点立即停止运动.是射线上的一点,且,为邻边作矩形.设运动时间为秒.

1)写出点的坐标( ); (的代数式表示)

2)当点落在上时,求此时的长?

3)①在的运动过程中,直角坐标系中是否存在点,使得四点构成的四边形是菱形?若存在求出的值,不存在,请说明理由.

②如图2,以为边按逆时针方向做正方形,当正方形的顶点落在矩形的某一边上时,则 (直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的顶点坐标为C(0,8),并且经过A(8,0),点P是抛物线上点A,C间的一个动点(含端点),过点P作直线y=8的垂线,垂足为点F,点D,E的坐标分别为(0,6),(4,0),连接PD,PE,DE.

(1)求抛物线的解析式;
(2)猜想并探究:对于任意一点P,PD与PF的差是否为固定值?如果是,请求出此定值;如果不是,请说明理由;
(3)求:①当△PDE的周长最小时的点P坐标;②使△PDE的面积为整数的点P的个数.

查看答案和解析>>

同步练习册答案