精英家教网 > 初中数学 > 题目详情

【题目】定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.

例:如图①,在ABC中,D为边BC的中点,AEBCE,则线段DE的长叫做边BC的中垂距.

1)设三角形一边的中垂距为dd≥0).若d=0,则这样的三角形一定是________,推断的数学依据是________

2)如图②,在ABC中,∠B=45°AB=BC=8AD为边BC的中线,求边BC的中垂距.

3)如图③,在矩形ABCD中,AB=6AD=4.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求ACF中边AF的中垂距.

【答案】(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3).

【解析】试题分析:(1)根据线段的垂直平分线的性质即可判断。

(2)如图②中,作AEBCE.根据已知得出AE=BE,再求出BD的长,即可求出DE的长。

(3)如图③中,作CHAFH先证△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的长,然后证明△ADE∽△CHE,建立方程求出EH即可。

解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等

(2)解:如图②中,作AE⊥BC于E.

在Rt△ABE中,∵∠AEB=90°,∠B=45°,AB=3

∴AE=BE=3,

∵AD为BC边中线,BC=8,

∴BD=DC=4,

∴DE=BD﹣BE=4﹣3=1,

∴边BC的中垂距为1

(3)解:如图③中,作CH⊥AF于H.

∵四边形ABCD是矩形,

∴∠D=∠EHC=∠ECF=90°,AD∥BF,

∵DE=EC,∠AED=∠CEF,

∴△ADE≌△FCE,

∴AE=EF,

在Rt△ADE中,∵AD=4,DE=3,

∴AE= =5,

∵∠D=EHC,∠AED=∠CEH,

∴△ADE∽△CHE,

=

=

∴EH=

∴△ACF中边AF的中垂距为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,已知AB3AD8,点EBC的中点,连接AEEF是∠AEC的平分线,交AD于点F,则FD=(  )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.

(1)求证:AB为⊙O的切线;

(2)求弦AC的长;

(3)求图中阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物线交轴于点,交轴于 (),

(1)如图,求抛物线的解析式;

(2)如图,在第一象限内抛物线上有一点,且点在对称轴的右侧,连接轴于点,过点轴的垂线,垂足为,设点的横坐标为,求出的函数关系式(不要求写出自变量的取值范围)

(3)如图,(2)的条件下,在点右侧轴上有一点,,连接,相交于点,连接,是线段的延长线上一点,连接,使,中点,在线段上取一点,射线线段相交于点,连接,在线段上取一点,连接,使得,,,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x22x+3的图象与x轴交于AB两点(A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

(1)求点ABC的坐标;

(2)M(m0)为线段AB上一点(M不与点AB重合),过点Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过点PPQAB交抛物线于点Q,过点QQNx轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;

(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;

(4)(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点Fy轴的平行线,与直线AC交于点G(G在点F的上方).若FG2DQ,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应学雷锋、树新风、做文明中学生号召,某校开展了志愿者服务活动,活动项目有戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.

(1)被随机抽取的学生共有多少名?

(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;

(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区2015年投入教育经费2900万元,2017年投入教育经费3509万元.

(1)2015年至2017年该地区投入教育经费的年平均增长率;

(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2019年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费是否能达到4250万元?请说明理由.

(参考数据: )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为,看这栋大楼底部C的俯角为,热气球A的高度为270米,则这栋大楼的高度为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图12分别是某款篮球架的实物图与示意图,已知ABBC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB60°,点H在支架AF上,篮板底部支架EHBCEFEH于点E,已知AH米,HF米,HE1米.

(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.

(2)求篮板底部点E到地面的距离.(结果保留根号)

查看答案和解析>>

同步练习册答案