精英家教网 > 初中数学 > 题目详情
如图,平行四边形ABCD中 ,BE平分∠ABCAEED=8:3,CD=24,则平行四边形ABCD的周长为         
114
∵四边形ABCD是平行四边形,
∴AD∥BC,∠EBC=∠AEB,
∵BE是∠ABC的角平分线,
∴∠EBC=∠AEB=∠ABE,AB=AE
AEED=8:3,CD=24
∴AE=24,ED=9
平行四边形ABCD的周长=2AB+2(AE+ED)= 2×24+2×(24+9)=114
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,△ABC中,ADBC边上的中线,四边形ABDE是平行四边形
(1)求证:四边形ADCE是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCE是菱形?说明你的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知正方形ABCD的边长是2,点E是AB的中点,延长BC到点F,使CF=AE.现把向左平移,使重合,得于点

小题1:证明:AH⊥DE
小题2:求的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

、如图,一个直角三角形纸片的顶点A在∠MON的边OM上移动,移动过程中始终保持AB⊥ON于点B,AC⊥OM于点A.∠MON的角平分线OP分别交AB、AC于D、E两点.
小题1:点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.
小题2:点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,判断并说明以A、D、F、E为顶点的四边形是怎样特殊的四边形?
小题3:若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列给出的条件中,能判定四边形ABCD是平行四边形的为(    ).
A.AB=BC,AD=CDB.AB=CD,AD∥BC
C.∠A=∠B,∠C=∠DD.AB∥CD,∠A=∠C

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,□ABCD中,E是AD边的中点,BE的延长线与CD的延长线相交于F.
求证:DC=DF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用同样规格的花色和白色两种正方形地砖铺设矩形地面,请观察图形并解答有关问题:(1)有第n个图形中,白色地砖总块数为           
(2)在第n个图形中,花色地砖总块数为           
(3)是否存在白色地砖与花色地砖数量相等的情形?若存在求出n的值,若不存在说明理由。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图,在平行四边形中,,∠的平分线交于点,则的长为
A.4B.3 C.D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图1,在四边形ABCD中,取对角线BD的中点O,连结OAOC. 显然,折线AOC能平分四边形ABCD的面积,再过点OOEACCDE,则直线AE即为一条“好线”.

(1)试说明直线AE是“好线”的理由;
(2)如图2,AE为一条“好线”,FAD边上的一点,请作出经过F点的“好线”,只需对画图步骤作适当说明(不需要说明“好线”的理由).

查看答案和解析>>

同步练习册答案