精英家教网 > 初中数学 > 题目详情

【题目】某景点的门票价格如表:

购票人数/人

1~50

51~100

100以上

每人门票价/元

12

10

8

某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.
(1)两个班各有多少名学生?
(2)团体购票与单独购票相比较,两个班各节约了多少钱?

【答案】
(1)

设七年级(1)班有x人、七年级(2)班有y人,由题意,得

解得:

答:七年级(1)班有49人、七年级(2)班有53人;


(2)

七年级(1)班节省的费用为:(12﹣8)×49=196元,

七年级(2)班节省的费用为:(10﹣8)×53=106元.


【解析】(1)设七年级(1)班有x人、七年级(2)班有y人,根据如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元建立方程组求出其解即可;
(2)用一张票节省的费用×该班人数即可求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).
表1

一班

5

8

8

9

8

10

10

8

5

5

二班

10

6

6

9

10

4

5

7

10

8

表2

班级

平均数

中位数

众数

方差

及格率

优秀率

一班

7.6

8

a

3.82

70%

30%

二班

b

7.5

10

4.94

80%

40%


(1)在表2中,a= ,b=
(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;
(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班抽查25名学生数学测验成绩(单位:分),频数分布直方图如图:

(1)成绩x在什么范围的人数最多?是多少人?
(2)若用半径为2的扇形图来描述,成绩在60≤x<70的人数对应的扇形面积是多少?
(3)从相成绩在50≤x<60和90≤x<100的学生中任选2人.小李成绩是96分,用树状图或列表法列出所有可能结果,求小李被选中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.

(1)当B与O重合的时候,求三角板运动的时间;
(2)如图2,当AC与半圆相切时,求AD;
(3)如图3,当AB和DE重合时,求证:CF2=CGCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y=的图象的一支位于第一象限.

(1)判断该函数图象的另一支所在的象限,并求m的取值范围;
(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在天水市汉字听写大赛中,10名学生得分情况如表

人数

3

4

2

1

分数

80

85

90

95

那么这10名学生所得分数的中位数和众数分别是(  )
A.85和82.5
B.85.5和85
C.85和85
D.85.5和80

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】钓鱼岛是我国固有领土.某校七年级(15)班举行“爱国教育”为主题班会时,就有关钓鱼岛新闻的获取途径,对本班50名学生进行调查(要求每位同学,只选自己最认可的一项),并绘制如图所示的扇形统计图.

(1)该班学生选择“报刊”的有 人.在扇形统计图中,“其它”所在扇形区域的圆心角是 度.(直接填结果)
(2)如果该校七年级有1500名学生,利用样本估计选择“网站”的七年级学生约有 人.(直接填结果)
(3)如果七年级(15)班班委会就这5种获取途径中任选两种对全校学生进行调查,求恰好选用“网站”和“课堂”的概率.(用树状图或列表法分析解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{﹣3,2}=2.

(1)max{,3}=
(2)已知y1=和y2=k2x+b在同一坐标系中的图象如图所示,若max{,k2x+b}=,结合图象,直接写出x的取值范围;
(3)用分类讨论的方法,求max{2x+1,x﹣2}的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:

请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长
(2)请你判断谁的说法正确,为什么?

查看答案和解析>>

同步练习册答案