精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,等腰直角三角形AOB的直角顶点A在第四象限,顶点B(0,﹣2),点C(0,1),点D在边AB上,连接CD交OA于点E,反比例函数 的图象经过点D,若△ADE和△OCE的面积相等,则k的值为

【答案】﹣
【解析】解:如图,过点D作DF⊥OB于F, ∵等腰直角三角形AOB的顶点B(0,﹣2),点C(0,1),
∴OB=2,AO=AB= ,BC=3,DF=BF,
∴△AOB的面积= × × =1,
又∵△ADE和△OCE的面积相等,
∴△BCD和△AOB的面积相等,
∴△BCD的面积为1,
×BC×DF=1,
×3×DF=1,
解得DF=
∴BF=
∴OF=2﹣ =
∴D( ,﹣ ),
∵反比例函数 的图象经过点D,
∴k= ×(﹣ )=﹣
所以答案是:﹣

【考点精析】关于本题考查的等腰直角三角形,需要了解等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列方程中,有两个相等实数根的方程是(
A.x(x﹣1)=0
B.x2﹣x+1=0
C.x2﹣2=0
D.x2﹣2x+1=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.

(1)已知BD= ,求正方形ABCD的边长;
(2)猜想线段CM与CN的数量关系并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周长为26,DE=4,则△BEC的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数 的图象如图.

(1)求它的对称轴与x轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若KG2=KDGE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE= ,AK=2 ,求FG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在Rt△ABC中,D是斜边AB的中点,AC=4,BC=2,将△ACD沿直线CD折叠,点A落在点E处,联结AE,那么线段AE的长度等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大楼AD与塔CB之间的距离AC长为27m,某人在楼底A处测得塔顶的仰角为60°,爬到楼顶D处测得塔顶B的仰角为30°,分别求大楼AD的高与塔BC的高(结果精确到0.1m,参考数据: ≈2.24, ≈1.732, ≈1.414)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,过点A(﹣ ,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根

(1)求线段BC的长度;
(2)试问:直线AC与直线AB是否垂直?请说明理由;
(3)若点D在直线AC上,且DB=DC,求点D的坐标;
(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案