【题目】如图,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周长为26,DE=4,则△BEC的周长为 .
【答案】18
【解析】解:∵AB∥DC,BE∥AD, ∴四边形ADEB是平行四边形,
∴AD=BE,AB=DE,
∵四边形ABCD是等腰梯形,
∴AD=BC,
∵梯形ABCD的周长为26,
∴AD+CD+BC+AB=AD+DE+EC+BE+AB=BE+2DE+EC+BC=26,
∵DE=4,
∴BE+EC+BC=18.
所以答案是:18.
【考点精析】本题主要考查了平行四边形的判定与性质和等腰梯形的性质的相关知识点,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积;等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金是x(元).发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.当每辆车的日租金为多少元时,每天的净收入最多?(注:净收入=租车收入﹣管理费)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60度,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45度,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.(保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E为AB的中点,F为AD上一点,EF交AC于G,AF=2cm,DF=4cm,AG=3cm,则AC的长为( )
A.9cm
B.14cm
C.15cm
D.18cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边的活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡,改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:
x(cm) | 10 | 15 | 20 | 25 | 30 |
y(g) | 30 | 20 | 15 | 12 | 10 |
(1)把上表中(x,y)的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点;
(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式并加以验证;
(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少cm?
(4)当活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心, AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连接AE、AD、DC.
(1)求证:D是 的中点;
(2)求证:∠DAO=∠B+∠BAD;
(3)若 ,且AC=4,求CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,等腰直角三角形AOB的直角顶点A在第四象限,顶点B(0,﹣2),点C(0,1),点D在边AB上,连接CD交OA于点E,反比例函数 的图象经过点D,若△ADE和△OCE的面积相等,则k的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,以AB为直径的O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.
(1)试说明DF是⊙O的切线;
(2)若AC=3AE=6,求tanC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图(1),图(2)),
请回答下列问题:
(1)这次被调查的学生共有人;
(2)请你将条形统计图补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com