【题目】如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边的活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡,改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:
x(cm) | 10 | 15 | 20 | 25 | 30 |
y(g) | 30 | 20 | 15 | 12 | 10 |
(1)把上表中(x,y)的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点;
(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式并加以验证;
(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少cm?
(4)当活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?
【答案】
(1)解:如图所示:
(2)解:由图象猜测y与x之间的函数关系为反比例函数,
∴设 (k≠0),
把x=10,y=30代入得:k=300,
∴ ,
将其余各点代入验证均适合,
∴y与x的函数关系式为: .
(3)解:把y=24代入 得:x=12.5,
∴当砝码的质量为24g时,活动托盘B与点O的距离是12.5cm.
(4)解:根据反比例函数的增减性,即可得出,随着活动托盘B与O点的距离不断减小,砝码的示数会不断增大;
∴应添加砝码.
【解析】(1)根据各点在坐标系中分别描出即可得出平滑曲线;(2)观察可得:x,y的乘积为定值300,故y与x之间的函数关系为反比例函数,将数据代入用待定系数法可得反比例函数的关系式;(3)把y=24代入解析式求解,可得答案;(4)利用函数增减性即可得出,随着活动托盘B与O点的距离不断减小,砝码的示数应该不断增大.
科目:初中数学 来源: 题型:
【题目】甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.
(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;
(2)求三位同学中至少有一人抽到自己制作卡片的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图,其对称轴为直线x=1,给出下列结论:
①b2-4ac>0;②2a+b=0;③abc>0;④3a+c>0.
则正确的结论个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.
(1)已知BD= ,求正方形ABCD的边长;
(2)猜想线段CM与CN的数量关系并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数 的图象如图.
(1)求它的对称轴与x轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在Rt△ABC中,D是斜边AB的中点,AC=4,BC=2,将△ACD沿直线CD折叠,点A落在点E处,联结AE,那么线段AE的长度等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com