精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是

【答案】3≤x≤4
【解析】解:过BP中点O,以BP为直径作圆, 连接QO,当QO⊥AC时,QO最短,即BP最短,
∵∠OQC=∠ABC=90°,∠C=∠C,
∴△ABC∽△OQC,

∵AB=3,BC=4,
∴AC=5,
∵BP=x,
∴QO= x,CO=4﹣ x,

解得:x=3,
当P与C重合时,BP=4,
∴BP=x的取值范围是:3≤x≤4,
所以答案是:3≤x≤4.

【考点精析】根据题目的已知条件,利用勾股定理的概念和直线与圆的三种位置关系的相关知识可以得到问题的答案,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C(2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y= 的图象上,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F= ,求cos∠ACB的值和线段PE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,AC与BD相交于点O,∠A=30°,∠COD=105°.则∠D的大小是(
A.30°
B.45°
C.65°
D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边的活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡,改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:

x(cm)

10

15

20

25

30

y(g)

30

20

15

12

10


(1)把上表中(x,y)的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点;
(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式并加以验证;
(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少cm?
(4)当活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:角平分线上的点到这个角的两边距离相等. 已知:
求证:
证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,3).

(1)求抛物线的表达式及顶点D的坐标;
(2)如图甲,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E,是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;
(3)如图乙,过点A作y轴的平行线,交直线BC于点F,连接DA、DB四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动,设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=30°,点M,N分别在边OA,OB上,OM= ,ON=3 ,点P,Q分别在边OB,OA上运动,连接MP,PQ,QN,则MP+PQ+QN的最小值为

查看答案和解析>>

同步练习册答案